Population Growth Models: Geometric Growth

Brook Milligan

Department of Biology
New Mexico State University
Las Cruces, New Mexico 88003
brook@nmsu.edu

Fall 2009
Purpose of population models

- Project into the future the current demography (e.g., survivorship and reproduction)
- Gauge the potential (or lack) for a population to increase
- Determine the consequences of changes in the current demography
Population Models in General

- Observables: \(N \) or \(N(\text{age}) \) or \(N(\text{stage}) \)
- Project population size \(N \) as a function of time \(t \)
- Projection in terms of fundamental parameters:
 - describing demographic events in an individual’s life
 - e.g., \(\text{Pr}(\text{birth}), \text{Pr}(\text{death}) \)
- enable understanding of how demographic vital rates affect the whole population
Projection versus Prediction

- No population experiences unlimited resources
- Yet, all populations have potential for exponential growth
- Projections describe potential, not what is actually predicted to occur
 - analogy: a speedometer projects potential travel only
Geometric Growth Models

General motivation

- Sequence of population sizes through time
 \[N_t, N_{t+1}, N_{t+2}, \ldots \]

- Change from one time to next
 - increases due to births during period
 - decreases due to deaths during period
 - increases due to immigrants during period
 - decreases due to emigrants during period
Mathematical Formulation

- Population size after an interval of time

\[N_{t+1} = N_t + B - D + I - E \]

- \(B, D \): birth, death
- \(I, E \): immigration, emigration

- Change in population size

\[\Delta N = N_{t+1} - N_t = B - D + I - E \]

- Closed versus open populations
Geometric Growth Model: Assumptions

- Closed population: \(I = E = 0 \)
- Constant per capita birth (\(b \)) and death (\(d \)) rates
 - \(B = bN \)
 - \(D = dN \)
Geometric Growth Model: Assumptions

- Closed population: \(I = E = 0 \)
- Constant per captita birth (\(b \)) and death (\(d \)) rates
 - \(B = bN \)
 - \(D = dN \)
- Unlimited resources
- No genetic structure
 - \(b \) and \(d \) identical for all individuals regardless of genotype
- No age- or size-structure
 - \(b \) and \(d \) identical for all individuals regardless of size, age, \ldots
- No time lags
 - birth and death depend on current population only

\[N_{t+1} = N_t + B - D \]
\[= N_t + \left(\frac{B}{N_t} - \frac{D}{N_t} \right) \cdot N_t \]
\[= N_t + (b - d) \cdot N_t \]
\[= (1 + (b - d)) \cdot N_t \]
\[= (1 + R_t) \cdot N_t \]
\[= \lambda_t \cdot N_t \]
\[\lambda_t = \frac{N_{t+1}}{N_t} \]
Geometric Population Growth: Change in Population Size

\[
\Delta N = N_{t+1} - N_t
\]
\[
= (1 + R_t)N_t - N_t
\]
\[
= N_t + R_tN_t - N_t
\]
\[
= R_tN_t
\]
\[
R_t = \frac{\Delta N}{N_t}
\]
Finite Rate of Increase: λ

\[N_{t+1} = \lambda_t N_t \]
(16)

\[\lambda_t = \frac{N_{t+1}}{N_t} \]
(17)

- population increase: $\lambda > 1$
- population stable: $\lambda = 1$
- population decrease: $\lambda < 1$
Projection of Population Size

Assume a constant value of λ: i.e., $\lambda_t = \lambda$

\[
\begin{align*}
N_1 &= \lambda N_0 \quad \text{(18)} \\
N_2 &= \lambda N_1 \\
 &= \lambda (\lambda N_0) \\
 &= \lambda^2 N_0 \quad \text{(20)} \\
N_t &= \lambda N_{t-1} \quad \text{(22)} \\
 &= \lambda (\lambda N_{t-2}) \\
 &= \lambda (\lambda (\lambda N_{t-3})) \\
 &= \lambda^t N_0 \quad \text{(25)}
\end{align*}
\]
Geometric Population Model: Doubling Time

How long does it take the population to double in size? That is, how long does it take the population to change from N_0 to $2N_0$?

$N_t = \lambda^t N_0$ \hfill (26)

$2N_0 = \lambda^t N_0$ \hfill (27)
Geometric Population Model: Doubling Time

How long does it take the population to double in size? That is, how long does it take the population to change from N_0 to $2N_0$?

\[N_t = \lambda^t N_0 \quad (26) \]
\[2N_0 = \lambda^t N_0 \quad (27) \]
\[2 = \lambda^t \quad (28) \]
How long does it take the population to double in size?
That is, how long does it take the population to change from N_0 to $2N_0$?

\begin{align}
N_t &= \lambda^t N_0 \\
2N_0 &= \lambda^t N_0 \\
2 &= \lambda^t \\
\ln(2) &= \ln(\lambda^t) \\
\ln(2) &= t \cdot \ln(\lambda) \\
t &= \frac{\ln(2)}{\ln(\lambda)}
\end{align}
Geometric Population Model: Half Life

How long does it take the population to become half as large in size? That is, how long does it take the population to change from N_0 to $\frac{1}{2}N_0$?

\[
N_t = \lambda^t N_0 \quad (32)
\]
\[
\frac{1}{2}N_0 = \lambda^t N_0 \quad (33)
\]
Geometric Population Model: Half Life

How long does it take the population to become half as large in size?
That is, how long does it take the population to change from N_0 to $\frac{1}{2}N_0$?

\[N_t = \lambda^t N_0 \]
\[\frac{1}{2} N_0 = \lambda^t N_0 \]
\[\frac{1}{2} = \lambda^t \]
Geometric Population Model: Half Life

How long does it take the population to become half as large in size?
That is, how long does it take the population to change from \(N_0 \) to \(\frac{1}{2} N_0 \)?

\[
N_t = \lambda^t N_0 \quad (32)
\]
\[
\frac{1}{2} N_0 = \lambda^t N_0 \quad (33)
\]
\[
\frac{1}{2} = \lambda^t \quad (34)
\]
\[
\ln\left(\frac{1}{2}\right) = \ln(\lambda^t) \quad (35)
\]
Geometric Population Model: Half Life

How long does it take the population to become half as large in size?
That is, how long does it take the population to change from \(N_0 \) to \(\frac{1}{2} N_0 \)?

\[
N_t = \lambda^t N_0 \quad \text{(32)}
\]
\[
\frac{1}{2} N_0 = \lambda^t N_0 \quad \text{(33)}
\]
\[
\frac{1}{2} = \lambda^t \quad \text{(34)}
\]
\[
\ln\left(\frac{1}{2}\right) = \ln(\lambda^t) \quad \text{(35)}
\]
\[
-\ln(2) = t \cdot \ln(\lambda) \quad \text{(36)}
\]
\[
t = -\frac{\ln(2)}{\ln(\lambda)} \quad \text{(37)}
\]
Geometric Population Model

- Quantitative description of how a population changes size as time progresses
- Depends directly on the finite rate of increase, λ
- λ in turn depends on the per capita rates of birth and death (through their difference only)
- λ measures the rate of increase
- λ measures the potential for a population to grow
- Questions that can be answered:
 - Is the population increasing, decreasing, or stable?
 - What is the potential for the population to increase?
 - How long does it take for the population to change by a certain amount?
 - How will the answers change if the vital rates (b and d) change?