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Course Overview 

Here I describe teaching four standard courses in the undergraduate mathematics curriculum 

either entirely or largely from primary historical sources: lower division discrete mathematics 

(introduction to proofs) and introductory upper division combinatorics, geometry, and number 

theory. They are simply illustrations of my larger dream that all mathematics be taught directly 

from primary sources [16]. While the content is always focused on the mathematics, the 

approach is entirely through interconnected primary historical sources, so students learn a 

great deal of history at the same time. Primary historical sources can have many learning 

advantages [5,6,13], one of which is often to raise as many questions as they answer, unlike 

most textbooks, which are frequently closed-ended, presenting a finished rather than open-

ended picture. For some time I have aimed toward jettisoning course textbooks in favor of 

courses based entirely on primary historical sources.  

The goal in total or partial study of primary historical sources is to study the original expositions 

and proofs of results in the words of the discoverers, in order to understand the most authentic 

possible picture of the mathematics. It is exciting, challenging, and can be extremely 

illuminating to read original works in which great mathematical ideas were first revealed. We 

aim for lively discussion involving everyone.  

I began teaching with primary historical sources in specially created courses (see my two other 

contributions to this volume), which then stimulated designing student projects based on 

primary sources for several standard college courses [1,2,3,7], all collaborations with support 

from the National Science Foundation. These primary source projects (PSPs) embed primary 

historical sources in contextual, historical, and mathematical commentary as a guide and 

overview of the big story, and provide numerous mathematical exercises for students. Their 

pedagogy will be further described below. 

Eventually we had built sufficient content into PSPs to teach several standard courses entirely 

from PSPs, without a textbook, and I have started expanding to other courses as well, not 

necessarily all in project format.  
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Today my first thought for teaching any course is not “I wonder what textbook I should use?” 

(i.e., which modern book will largely drive and determine my course), but rather “I wonder 

what primary historical sources I can choose to build an entire course?”  

Course Design  

While the four courses I describe are standard in almost any college curriculum, I will next 

clarify their level, content, audience, prerequisites, and to what extent I have taught them with 

primary sources.  

1. Discrete mathematics at the lower division is often combined with introduction to proof, 

as a prerequisite to all upper division courses for mathematics or mathematics 

secondary education majors, and has a prerequisite of college algebra. Standard topics 

include basic logic and proof techniques, and some selections from algorithms (e.g., the 

Euclidean algorithm), discrete summation, elementary number theory, permutations 

and combinations, graph theory, and sets, functions, and relations. Two colleagues and I 

have each taught this course multiple times entirely from PSPs [4]. 

2. Combinatorics at the upper division, but without a lower-division combinatorics 

prerequisite, relies on lower-division discrete mathematics and student proof abilities, 

but nothing else. The course is an elective for an upper-division requirement for 

mathematics and secondary mathematics education majors. Typical topics might include 

advanced counting techniques, matching correspondences, and generating functions. I 

have taught this course entirely with PSPs.  

3. Geometry at the upper division, but introductory in nature, relies on student familiarity 

with proofs, but not much geometry. This is a required course for secondary 

mathematics education majors, and an elective for an upper-division requirement for 

mathematics majors. The goal is to contrast Euclidean and non-Euclidean geometries. I 

have taught this course with a large historical component interspersed throughout 

based on a sequence of primary sources on the development of hyperbolic non-

Euclidean geometry.  

4. Number Theory at the upper division, but introductory in nature, relies on student proof 

abilities, but no prior number theory knowledge, nor even any abstract algebra. This is 

an elective for an upper-division requirement for mathematics majors. The course might 

typically include the Euclidean algorithm, unique factorization, linear Diophantine 

equations, linear congruences, Fermat’s Little Theorem, Euler’s generalization, the RSA 

cryptosystem, Wilson’s Theorem, primitive roots, and the quadratic reciprocity law. I 

have taught the course, covering most of these topics, entirely from primary historical 

sources.  
At home and in class we read, discuss, and interpret results and their proofs from primary 

historical sources, with students writing their thoughts and questions about these works, and 

we discuss how the various sources tie together. Regular written assignments based on the 
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primary sources consist of probing definitions and proving results. A primary aim is to have 

students actually do mathematics themselves by creating some ideas and devising proofs on 

their own. 

Primary source projects (PSPs) pervade much, though not all, of how I teach these courses [6,7]. 

A key feature of a PSP is a series of tasks for students as they work through the module, 

intended to provoke students to develop their own understanding based on the primary 

sources as stimuli.  Some tasks ask students to fill in missing proof details, or to reflect explicitly 

on the nature of the mathematical process by answering questions about the level of rigor in 

the source. Our students thereby progress naturally in their ability to construct proofs meeting 

today's standards. We can also introduce our students to present-day notation, terminology, 

and definitions as a natural outgrowth of studying the primary sources. 

Different instructors use different pedagogies in the classroom with primary sources. 

Personally, I use a non-lecture three-part assignment method that I apply in almost all my 

teaching, discussed in detail in [15], and in a handout for students (see Appendix B on 

homework guidelines). For each topic, I first expect students to read new material in advance of 

class, and to write questions about their mathematical reading for me to read before class, or, 

in a lower-division course, to respond to reading questions I pose. Second, I expect students to 

prepare mathematical work for class based on their reading, usually by attempting solutions of 

pre-assigned exercises. These two pre-class parts are graded based only on effort and 

preparation for class, very quick to assess with a plus, check, or minus.  

In the classroom we first discuss student reading questions as a group, along with questions I 

inject. Class discussions are often challenging and tremendous fun, because the primary 

sources provide fabulous grist for deep and wide-ranging considerations. The majority of 

classroom time is then spent with students working in informal groups on the previously 

assigned problems, interspersed with impromptu whole-class discussions or presentations 

assigned by me as common questions and interesting approaches arise.  

The third part of each topic’s homework assignment consists of completing post-class 
homework on the topic, usually a very few challenging exercises not worked on in class. 
Students are always encouraged to discuss their ideas with others, and then expected to finish 
and write up their polished post-class homework entirely on their own, in their own words, to 
hand in for me to read and mark carefully, and possibly to request rewriting for improvement, 
intended to reach a high level of perfection. This post-class homework part ultimately receives 
a single letter grade for quality, one for each class day.  
 
It is possible to become overwhelmed timewise with reading student papers using this 
approach, but it needn’t be that way. One can carefully be very brief in marking the first two 
pre-class homework parts. In responding to student reading questions, I make only a few notes 
on student papers, and a few notes of my own to prepare me for class discussion.  The second 
part, students’ pre-class mathematical exercise preparation, has been fully covered in class, so I 
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never mark the work; I only look, for at most a few seconds, to be sure the evidence shows they 
adequately prepared. For the third part, the post-class exercises that I mark closely, I am careful 
to assign only very few exercises, often only two. Once I adapted to this method, it takes no 
more time overall than a more traditional approach; and amazingly, students need less time 
from me in office hours, because they receive more individual assistance in the classroom.  
 
The course grade is based primarily on the holistic quality of the total of the three parts of daily 

student work. Sometimes there will also be a midterm and final exam worth at most 30% of the 

grade. The key is that all the daily work must be a very large part of the course grade, the 

message being that it is the most important work for learning. In some upper-level courses I 

eventually feel no need for exams; I reserve the right to make this decision as the course 

progresses.  

In all these courses, whether there is a preordained content syllabus or not, I use a flexible 

timetable (because this chapter describes four courses all with flexible timetables, there are no 

course outlines appended), often influenced by what explorations happen in the classroom 

based on student response and activities, according to the classroom methods described above. 

On the first day I introduce and discuss the nature and expectations of the course, and we dive 

into some mathematics, with students studying and discussing primary sources together. 

Succeeding days always have reading/writing in advance, preparatory mathematical work on 

exercises, in class group and whole class work, and final homework exercises, as detailed above. 

Resources 

When I began teaching with primary sources, I and my colleagues had little more than a handful 

of chosen primary sources on a few topics, some of which we had to translate ourselves, often 

with no annotation, context, or exercises. And indeed this is how anyone can start developing 

their own materials; I enthusiastically recommend it. Guidance on the pedagogical principles, 

and on design of materials, can be found in [5,6,7,13,16]. Today primary sources are much 

more easily available, and in translation as well, than when we started. The reader may be 

pleasantly surprised that finding promising and appropriate primary sources for teaching on a 

given topic is not as hard as may be feared. For those who wish to design their own materials, 

the bibliography [17] provides a window to many historical sources for teaching. The recent 

sizeable source book [20] would be a good place to find many good sources on a variety of 

topics (see the review [18]).  

Here I describe the particular resources I have used. And as illustrations, Appendix A introduces 

small excerpts from selected primary source material for each course, along with connected 

sample exercises for students. 

1. Discrete mathematics: This lower-division introductory course has been taught several 

times by multiple instructors entirely from our collections of projects based on primary 

historical sources, as described in [4]. The article [3] also describes the projects and 
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much about teaching with them, and [1,2,3] lead to the projects themselves. Six of these 

projects are specifically for an introductory course in discrete mathematics:  

 Deduction through the Ages: A History of Truth, with sources by Chrysippus, Boole, 

Frege, Russell and Whitehead, Wittgenstein, and Post 

 Sums of Numerical Powers in Discrete Mathematics: Archimedes Sums Squares in the 

Sand 

 Euclid's Algorithm for the Greatest Common Divisor 

 An Introduction to Symbolic Logic, with sources by Russell and Whitehead 

 An Introduction to Elementary Set Theory, with sources by Cantor and Dedekind 

 Pascal's Treatise on the Arithmetical Triangle 

We have taught the course entirely with various combinations of four of the six projects. 

Instructors make their own selections.  

2. Combinatorics: I have taught this upper-division introductory course entirely from our 

collections of projects based on primary historical sources. The article [3] describes the 

projects and much about teaching with them, and provides links to the projects 

themselves. Three projects are listed specifically for an upper-level course in 

combinatorics:  

 Figurate Numbers and Sums of Numerical Powers: Fermat, Pascal, Bernoulli 

 Gabriel Lamé's Counting of Triangulations 

 Networks and Spanning Trees, with sources by Cayley, Prüfer, and Borůvka 

Together these projects cover the content of a one-semester course. 

3. Geometry: I have taught this upper-division introductory course partly from the 

sequence of annotated primary historical sources in the chapter Geometry: The Parallel 

Postulate in our book Mathematical Expeditions: Chronicles by the Explorers [10]. The 

website [11] provides sample sections from the chapter. The primary sources follow two 

millennia of the development of non-Euclidean geometry via excerpts from Euclid on his 

parallel postulate, Legendre’s early nineteenth-century final attempts to prove the 

parallel postulate, Lobachevsky’s almost simultaneous introduction of the brave new 

world of planar hyperbolic geometry, and Poincaré’s disk model confirming its equal 

footing with Euclidean geometry. To the sources we have added extensive annotation, 

contextual, historical, and mathematical commentary as a guide and overview of the big 

story, and numerous mathematical exercises for students. We also included copious 

references to the literature for deeper understanding by both teachers and students. 

The primary sources from this chapter formed a major theme in the course. They were 

interwoven with other course content from the book The Four Pillars of Geometry by 

John Stillwell.  

 

Two particularly illuminating and successful uses of the primary sources were to 

challenge students to find the flaw in Legendre’s proof of the parallel postulate, and to 

have students individually present to the class and argue for Lobachevsky’s analysis and 
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sequence of results leading to his non-Euclidean geometry. These presentations lasted 

over a number of class days, and resulted in tremendous student involvement in class 

discussions.  

4. Number Theory: The majority of the content consists of guided student study of 

translated selections from the unpublished handwritten manuscripts of Sophie Germain 

(1776-1831), who developed the first general result toward a proof of Fermat’s Last 

Theorem. Recent discoveries in Germain’s manuscripts and her correspondence with 

Gauss have shown that she had a grand plan for proving Fermat’s Last Theorem in its 

entirety, and that she made very substantial progress on carrying it out [12].  

 

I realized that students could learn almost all the topics in a first number theory course 

via guided study directly from Germain’s manuscripts and correspondence, even though 

her manuscripts were not teaching documents, but rather the latest research, building 

on Gauss’s introduction of the congruence view of number theory [19]. One particular 

benefit of this approach is that the course focuses largely on one grand goal, Fermat’s 

Last Theorem, so the topics are all highly motivated. The course was essentially a 

detective story, learning number theory via my guidance in order to decipher Germain’s 

manuscripts.  

 

I stuck determinedly to a “just as needed” approach to learning the material. I never 

told students about number theoretic concepts or results needed to decipher Germain. 

Instead I helped them discover these ideas in her manuscripts, only as needed, to 

comprehend her writings. For instance, even Fermat’s Little Theorem was a surprise 

discovered by students when Germain used it without mention. There is no better 

motivation than a “just as needed” approach.  

 

The course ends with selections from a sequence of primary sources on quadratic 

reciprocity, in which Fermat studies primes of a certain quadratic form, Euler discovers 

general patterns in prime divisors of quadratic forms, Lagrange develops a theory of 

quadratic forms and divisors, Legendre asserts the quadratic reciprocity law, Gauss 

proves it, Eisenstein creates a geometric proof, and Gauss composes quadratic forms, 

foreshadowing the class group. This latter sequence of guided sources is from the 

chapter Patterns in Prime Numbers: The Quadratic Reciprocity Law in our book 

Mathematical Masterpieces: Further Chronicles by the Explorers [9]. If time is short, the 

focus can be primarily on Fermat, Euler, and Eisenstein. The website [11] provides 

sample sections. 

 

While there was no textbook for the course, I did recommend that each student choose 

some number theory book as a bedside “security blanket” to read if they wanted 

something to supplement the struggle of deciphering Germain’s manuscripts. I 
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suggested that the book [14] provides an inquiry-based approach, while [8] provides a 

more traditional and more extensive presentation. 

 

I am writing a book for the course based primarily on Germain’s manuscripts. In the 

meantime, interested instructors may obtain these materials directly from me.  

 

The response of students to a “just as needed” discovery pedagogy for learning number 

theory from Sophie Germain’s manuscripts was absolutely phenomenal, making this 

course by far my most successful and rewarding in almost 40 years of teaching.  

Assignments 

Regular homework and related classroom work are the heart of each course. Assignments are 

largely mathematical in nature, based directly on the primary sources, since the course is first 

and foremost mathematics, set authentically in its history. Exercises often strengthen students’ 

understanding of a primary source, and are sometimes open-ended. To give a sense for the 

nature of assignments, Appendix A provides sample exercises covering the four courses, with 

each exercise preceded by a little context and a small excerpt from the relevant primary source. 

Lessons Learned 

Here I have presented four standard courses taught largely or entirely from primary historical 

sources. Two were taught from a collection of sizeable primary source projects on diverse 

topics, one from a sequence of primary sources on a single topic intermingled with other 

material, and one was taught largely from a single author’s manuscripts and letters. All 

approaches worked well, so there are many ways primary sources can successfully be put 

together to teach a course, or mixed with other material.  

The particular courses chosen were largely serendipitous; I would happily aim to teach any 

course from primary sources. My experience is that this approach can revitalize the teaching of 

mathematics, by simultaneously making mathematics more authentically intellectually 

challenging, more genuinely meaningful, and more appealing to students. I would never 

relinquish my aim of offering my students the richness of studying primary sources.  

While I now have the experience to enable teaching with primary sources to come naturally, 

the additional preparation involved in finding appropriate sources, and readying them for 

teaching, is large, especially for an inexperienced instructor. I have found, though, that I can 

teach quite easily with primary source materials prepared by other instructors, so I hope that it 

will become easier for anyone to teach this way as more and more such materials become 

available.  

The accomplishments of students studying primary sources are always inspiring. And for many 

years we have asked our students in questionnaires what they perceive as the advantages and 
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disadvantages. Their reactions are often insightful. The disadvantages mentioned are 

surprisingly few and rare, and usually balanced with a concomitant advantage. For instance, 

some students say that the sources can be hard to read, but that it is worth it. Others have said 

that the sources do not provide a modern view, but that contrasting both the older and modern 

views is highly beneficial. On the other hand, the advantages given by our students are many  

and frequent, and include the following: 

● For me, being able to see how the thought processes were developed helps me understand 
how the actual application of those processes work[s]. Textbooks are like inventions without 
instruction manuals. 
● The original sources can be debated to form new interpretations. 
● As a student you get to see where the math we do today came from and engage in the kind of 
thinking that was necessary to create it. 
● We learn directly from the source and attempt to learn concepts based off of the original 
proofs rather than interpretation of the original proof from someone else. 
● It gives you the sense of how math was formed which prepares you for how to think up new,  
innovative mathematics for the future. 
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Appendix  A: Sample primary source materials and 

exercises 

To give the flavor, here I describe and provide a small primary source excerpt and related 

exercise from the materials for each course. 

1. Discrete Mathematics 

Pascal’s Treatise on the Arithmetical Triangle [Pascal’s Triangle] not only treats combinations 

and the binomial theorem. It is the first place in the literature where the principle of 

mathematical induction is fully explicated, justified as a proof technique, and systematically 

applied. Pascal’s Twelfth Consequence is the most important and famous in the whole 

treatise. Having built up to this in previous Consequences, Pascal here presents a formula for 

the ratio of consecutive numbers in a base [row] of the triangle, then proven by induction in 

a generalizable example, after explaining why the induction method is sufficient. From this 

he will obtain an elegant and efficient formula for all the numbers in the triangle, essentially 

our modern factorial formula. 

 

 
 

“Twelfth Consequence 
In every arithmetical triangle, of two contiguous cells in the same base the upper is to the 
lower as the number of cells from the upper to the top of the base is to the number of cells 
from the lower to the bottom of the base, inclusive.  
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Let any two contiguous cells of the same base, E, C, be taken. I say that 

E  :  C  ::  2 :  3 

the 

lower 

 the 
upper 

 because there are two 

cells from E to the bottom, 

namely E, H, 

 because there are three 
cells from C to the top, 
namely C, R, μ. 

 
Although this proposition has an infinity of cases, I shall demonstrate it very briefly by 
supposing two lemmas: 
The first, which is self-evident, that this proportion is found in the second base, for it is 
perfectly obvious that 1:1:::  ; 

The second, that if this proportion is found in any base, it will necessarily be found in the 
following base. 
Whence it is apparent that it is necessarily in all the bases. For it is in the second base by the 
first lemma; therefore by the second lemma it is in the third base, therefore in the fourth, and 
to infinity. 
It is only necessary therefore to demonstrate the second lemma as follows: If this proportion 
is found in any base, as, for example, in the fourth, ,D  that is, if 3:1::: BD , and  

2:2::: B , and 1:3:::  , etc., I say the same proportion will be found in the 

following base,  H  , and that, for example,  3:2::: CE  . 

For  3:1::: BD  , by hypothesis. 

 
Therefore      

 
D  B

   
:    B    ::    

1  3
   

:    3   

  E    :    B    ::    4    :    3 .  

 
Similarly  ,2:2::: B   by hypothesis. 

 
Therefore   

 
B  

   
:    B    ::    

2  2
   
:   2   

  C    :    B    ::    4    :   2   
But    B    :    E    ::    3    :    4 .  

 
Therefore, by compounding the ratios, .2:3::: EC  
q.e.d. 
The proof is the same for all other bases, since it requires only that the proportion be found in 
the preceding base, and that each cell be equal to the cell before it together with the cell 
above it, which is everywhere the case.” 
 
Exercise: Pascal's Twelfth Consequence: the key to our modern factorial formula 

 Rewrite Pascal's Twelfth Consequence as a generalized modern formula, entirely in our 

Ti,j terminology. Also verify its correctness in a couple of examples taken from his table in 

the initial definitions section. 
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 Adapt Pascal's proof by example of his Twelfth Consequence into modern generalized 

form to prove the formula you obtained above. Use the principle of mathematical 

induction to create your proof. 

 

2. Combinatorics 

Jakob Bernoulli developed the equivalent of Fermat’s claims about the relationships 

between figurate numbers, used these to recursively develop polynomial formulas for sums 

of increasing powers, wrote a table for the first ten powers, and guessed the general 

pattern, thereby introducing the Bernoulli numbers to the world. 
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







































 

 
Indeed, a pattern can be seen in the progressions herein, which can be continued by means of 

this rule: Suppose that  c   is the value of any power; then the sum of all  cn   or  
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1 1 3

5

7

1 1 1 2

1 2 2 2 3 4

1 2 3 4

2 3 4 5 6

1 2 3 4 5 6

2 3 4 5 6 7 8

c c c c c

c

c

c c c c
n n n An Bn

c

c c c c c
Cn

c c c c c c c
Dn

  





   
   

  

       


   

           


     



 ,& so on

 

 where the value of the power  n   continues to decrease by two until it reaches  n   or  nn  . 
The uppercase letters  A  ,  B  ,  C  ,  D  , etc., in order, denote the coefficients of the final 

term of  ,nn    ,4n    ,6n    8n  , etc., namely  

A  1
6

, B  ?1
30

, C  1
42

, D  ?1
30

.

 
These coefficients are such that, when arranged with the other coefficients of the same 

order, they add up to unity: so, for  D  , which we said signified  
30

1  , we have  

1
9
 1

2
 2

3
? 7

15
 2

9
ÝDÞ? 1

30
 1.

 
 
By means of these formulas, I discovered in under a quarter hour's work that the tenth (or 
quadrato-sursolid) powers of the first thousand numbers from unity, when collected into a 
sum, yield  

91409924241424243424241924242500.
 

Clearly this renders obsolete the work of Ismael Bulliald, who wrote so as to thicken the 
volumes of his Arithmeticae Infinitorum with demonstrations involving immense labor, 
unexcelled by anyone else, of the sums of up to the first six powers (which is only a part of 
what we have superseded in a single page.” 
 

Exercise: Guess, as did Bernoulli, the complete pattern of coefficients for sums of powers 

formulas just from the examples in Bernoulli's table. Clearly the pattern is to be sought down 

each column of Bernoulli's table. The key is to multiply each column of numbers by a common 

denominator, and then compare with the arithmetical triangle (computing the sequence of 

successive differences in a column, and the successive differences in that sequence, etc., may 

also help). Can you also express the general rule for calculating the special numbers A,B,C,D, 

…, which Bernoulli introduces? Hint: What happens when n=1? 

 

3. Geometry 

Legendre was the last serious mathematician to attempt to prove Euclid’s parallel postulate, 

while at essentially the same time Gauss, Lobachevsky, and Bolyai were developing the non-

Euclidean hyperbolic geometry that negated it. From Legendre’s many published attempts, 
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students study an entire proof that the angle sum of a triangle must be two right angles 

(equivalent to the parallel postulate), and are challenged to find an unsupported 

assumption. Legendre’s text contains the passage  

“Let A be the smallest of the angles in triangle ABC, on the opposite side BC make the angle 

BCD=ABC, and the angle CBD=ACB; the triangles BCD, ABC will be equal, by having an equal 

side BC adjacent to two corresponding equal angles [pr. 7]. Through the point D draw any 

straight line EF which meets the two extended sides of angle A in E and F.” 

 

Students are first challenged, from amongst the entire proof, to ferret out that a subtlety in 

this passage is the key: 

Exercise: Before reading our commentary after Legendre’s results, find and discuss the flaw in 

his proof of the parallel postulate. 

 

4. Number Theory 

Germain’s plan for proving Fermat’s Last Theorem, and an indication of the challenges in 

carrying it out, are revealed at the very beginning of one of her manuscripts. But for students 

beginning from scratch, the text has numerous other challenges as well, such as 

understanding what is hidden behind the use of the word “residue”, even though the word 

modulus, or divisor, is never mentioned. 

 

“The impossibility of this equation would follow without doubt if one could demonstrate the 

following theorem: 

     For every value of p other than p=2, there is always an infinity of prime numbers of the 

form Np+1 for which one cannot find two p-th power residues whose difference is unity. 

    After having established that in fact it would result from this theorem that in the equation 

xp+yp=zp, the numbers x, y, and z, could not be other than infinite, I continue on to the 

examination of several special propositions which, for lack of an absolute demonstration, 
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serve to establish at least the necessity that the same numbers x, y, and z would be extremely 

large numbers.  

    I remark first that, excepting the case where N is a multiple of 3, if in the form Np+1 one 

fixes for N a constant value and if one lets the value of p vary, one will find an infinite number 

of prime numbers pertaining to this form, for which there will not be two p-th power residues 

which follow one another immediately in the order of natural numbers; and that to the 

contrary there can never be other than a finite number of prime numbers of the same form 

which enjoy the opposite property. Now since nothing prevents the successive assignment of 

an infinity of values to N, one can conclude from what precedes that there must exist an 

infinity of values of p for which the equation xp+yp=zp is impossible. However such a result is 

too vague to apply to the demonstration of the impossibility of the same equation in the case 

of a determined value of p. In fact if one denotes by α this value, one could always fear that 

the numbers Nα+1, N′α+1, &c. find themselves among the prime numbers of the more 

general forms Np+1, N′p+1 &c. for which there can exist two p-th power residues whose 

difference is unity; and despite the little probability that this objection is justified by 

examination, I have not been able to succeed at destroying it.” 

 

Exercise:  

a) Discuss very clearly the possible interpretations of Germain's claim “and that to the 

contrary there can never be other than a finite number of prime numbers of the same 

form which enjoy the opposite property” about a finiteness property, and what she 

concludes therefrom, namely “Now since nothing prevents the successive assignment of 

an infinity of values to N, one can conclude from what precedes that there must exist an 

infinity of values of p for which the equation xp+yp=zp is impossible.” 

b) Devise a table in terms of N and p, showing how under one obvious interpretation of her 

finiteness claim, the values of N and p could correspond to success or failure of Condition 

NC in such a way that her conclusion isn't correct, i.e., she cannot use the italicized 

theorem to prove Fermat's Last Theorem for infinitely many p. 

c) Then modify the finiteness hypothesis by strengthening it in such a way that you can 

state and prove a theorem to justify Germain's conclusion. In other words, state a 

hypothesis making explicit what she claims in her preceding sentences, and show how it 

would prove Fermat's Last Theorem for infinitely many values of p, by showing how it 

would lead to her italicized theorem at the beginning of Manuscript A. 
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Appendix B: Handout for students on homework 

assignment guidelines 

Keep this sheet 
 

Guidelines for all regular homework assignments 

 

Please put your name (and any nickname your prefer) on the first page, staple your pages 

together, and do not fold them. Use both sides of the paper if you wish, to save paper. Please do 

not write in light pencil. Please write clearly. Thank you. 

Parts A, B, C of each homework are equally important. 

Part A: Advance preparation. Hand this in at the beginning of class, one class period 

before our class discussion and work on new reading. Reading responses (a), questions (b), 

reflection (c), and time spent (d):  
You do not need a new page for each part (a),(b),(c),(d). 

a) Read assigned material. Reread as needed for complete understanding. Then write clear 

responses to assigned questions about the reading. 

b) Write down some of your own explicit questions about your reading, ready to bring up in 

class. This may involve new or old concepts that are confusing to you, and connections to 

other ideas. You should also consider writing down what was well explained and interesting, 

what was confusing, and what you had to reread but eventually understood. 

c) Reflection: Write two or three sentences reflecting on the process of your work; this should 

only take a few minutes. Write about how things went with any assignment or reading done 

for class, and other course work. This should reflect both your ongoing personal feelings 

about the course as a whole and your interaction with the material at hand. 

d) Write how much time you worked on part A. 

 

Part B: Warmup exercise preparation to present in class. This is due during class when we 

begin to discuss new material.  Work individually, and then with others in your group outside 

class time, on a few assigned easy warmup exercises on the new material we will discuss, based 

on your advance reading in Part A. Write up the solutions to these individually, to hand in in 

class. I will ask individuals and groups to present some of these to the class, to get us started 

discussing new material. Be sure to hand these in before leaving class. 

Also always write how much time you worked on part B, and with whom. 

 

Part C: Main exercises. These will be assigned after class discussion and work on new 

material. They will normally be due next period. Work individually and with others in your 

group on these. Also come to see me during office hours or at other appointment times about 

these. I am happy to help you. Then go home and write up your final solutions completely by 

yourself, without comparing with other people. The paper you hand in should be entirely your 

own writing, not the same as anyone else's. 


