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1 Introduction

Leonhard Euler (1707–1783) discovered his powerful “summation formula”
in the early 1730s. He used it in 1735 to compute the first 20 decimal places
for the precise sum of all the reciprocal squares — a number mathemati-
cians had competed to determine ever since the surprising discovery that the
alternating sum of reciprocal odd numbers is π/4. This reciprocal squares
challenge was called the “Basel Problem”, and Euler achieved his 20-place
approximation to it using only a few terms from his diverging summation
formula. In contrast, if sought as a simple partial sum of the original slowly
converging series, such accuracy would require an overwhelming more than
1020 terms. With his approximation, Euler was probably convincing him-
self that the sum was exactly π2/6, which spurred his first solution of the
celebrated Basel Problem in the same year [7, v. 14, v. 16, section 2, pp.
VIIff][18, 26].

We are left in awe that just a few terms of a diverging formula can so
closely approximate this sum. Paradoxically, Euler’s formula, even though
it usually diverges, provides breathtaking acceleration of approximations for
partial and infinite sums of many slowly converging or diverging series. My
goal here is to explore Euler’s own mature view of the summation formula
and a few of his more diverse applications, largely in his own words from his
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book Institutiones Calculi Differentialis (Foundations of Differential Calcu-
lus) of 1755, never before available in English. I hope that readers will be
equally impressed at some of his other applications.

In the Institutiones, Euler connected his summation formula to Bernoulli
numbers, and proved Bernoulli’s conjectured sums of powers formulas. He
also applied the formula to harmonic partial sums and the related gamma
constant, and to sums of logarithms, thereby approximating large factorials
(Stirling’s asymptotic approximation) and binomial coefficients with ease.
He even made an approximation of π that he himself commented was hard
to believe so accurate for so little work. Euler was a wizard at finding
these connections, at demonstrating patterns by generalizable example, at
utilizing his summation formula only “until it begins to diverge”, and at
determining the relevant “Euler-Maclaurin constant” in each application
of the summation formula. His work also inaugurated study of the zeta
function [2, 24]. Euler’s accomplishments throughout this entire arena are
discussed from different points of view in many modern books [5][11, pp.
119–136][12, II.10][13, ch. XIII][15, p. 197f][19, ch. XIV] [26, p. 184, 257–
285][28, p. 338f].

Euler included all of these discoveries and others in beautifully unified
form in Part Two1 of the Institutiones [7, vol. 10][8], portions of which I have
translated for teaching an undergraduate course based on original sources
[20, 21, 22], and for selective inclusion2 in a companion book built around
annotated sources [18]. Others have also used this material in teaching
honors calculus. More expansively, our book chapter The Bridge between
the Continuous and the Discrete [23] follows the entwining of the quest for
formulas for sums of numerical powers with integration, through original
sources by Archimedes, Fermat, Pascal, Jakob Bernoulli, and finally from
Euler’s Institutiones.

I will first discuss the Basel Problem, and briefly outline the progression
of earlier ideas and sources that led to the connection in Euler’s work be-
tween sums of powers and the Basel Problem. Then I will illustrate a few of
Euler’s achievements with the summation formula via selected translations.
I present Euler’s derivation of the formula, discuss his analysis of the result-
ing Bernoulli numbers, show his application to sums of reciprocal squares,
to large factorials and binomial coefficients, and mention other applications.
I will also raise and explore the question of whether large factorials can be

1Part One has recently appeared in English translation [9], but not Part Two.
2See [10] for my most extensive translation from Euler’s Part Two (albeit more lightly

annotated).
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determined uniquely from Euler’s formula. See [18, 23] for a fuller exposition
and treatment of much of this material.

2 The Basel Problem

In the 1670s, James Gregory (1638–1675) and Gottfried Leibniz (1646–1716)
discovered that

1− 1
3

+
1
5
− 1

7
+ · · · = π

4
,

as essentially had the mathematicians of Kerala in southern India two cen-
turies before [16, pp. 493ff,527]. Since, aside from geometric series, very few
infinite series then had a known sum, this remarkable result enticed Leibniz
and the Bernoulli brothers Jakob (1654–1705) and Johann (1667–1748) to
seek sums of other series, particularly the reciprocal squares

1
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+
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+
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+ · · · = ?,

a problem first raised by Pietro Mengoli (1626–1686) in 1650. Jakob ex-
pressed his eventual frustration at its elusive nature in the comment “If
someone should succeed in finding what till now withstood our efforts and
communicate it to us, we shall be much obliged to him” [28, p. 345].

Euler proved that the sum is exactly π2/6, in part by a broadening of
the context to produce his “summation formula” for

∑n
i=1 f(i), with n pos-

sibly infinite. His new setting thus encompassed both the Basel Problem,∑∞
i=1 1/i2, and the quest for closed formulas for sums of powers,

∑n
i=1 ik ≈∫ n

0 xk dx, which had been sought since antiquity for area and volume investi-
gations. The summation formula helped Euler resolve both questions. This
is a fine pedagogical illustration of how generalization and abstraction can
lead to the combined solution of seemingly independent problems.

3 Sums of powers and Euler’s summation formula:
historically interlocked themes

Our story (told more completely in [18, 23]) begins in ancient times with the
Greek discrete approximations used to obtain continuous areas and volumes
by the method of exhaustion. The Pythagoreans (sixth c. B.C.E.) knew that

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
,
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and Archimedes (third c. B.C.E.) proved an equivalent to our modern for-
mula

12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
,

which he applied to deduce the area inside a spiral [1, Spirals]:
The area bounded by the first turn of the spiral and the initial line is equal to
one-third of the first circle.

Summing yet higher powers was key to finding other areas and volumes,
and one finds the formula for a sum of cubes in work of Nicomachus of
Gerasa (first c. B.C.E.), Āryabhat.a in India (499 C.E.), and al-Karaj̄ı in the
Arab world (c. 1000) [4][14, p. 68f][16, p. 212f,251ff]. The first evidence of a
general relationship between various exponents is in the further Arabic work
of Abū ‘Al̄ı al-H. asan ibn al-Haytham (965–1039), who needed a formula for
sums of fourth powers to find the volume of a paraboloid of revolution. He
discovered a doubly recursive relationship between varying exponents [16,
p. 255f].

By the mid-seventeenth century Pierre de Fermat (1601–1665) and Blaise
Pascal (1623–1662) had realized the general connection between the figurate
(equivalently binomial coefficient) numbers and sums of powers, motivated
by the drive to determining areas under “higher parabolas” (i.e., y = xk) [16,
p. 481ff]. Fermat called the sums of powers challenge “what is perhaps the
most beautiful problem of all arithmetic”, and claimed a recursive solution
using figurate numbers. Pascal used binomial expansions and telescoping
sums to obtain the first simply recursive relationship between sums of powers
for varying exponents [4].

Jakob Bernoulli, during his work in the nascent field of probability, was
the first to conjecture a general pattern in sums of powers formulas, simul-
taneously introducing the Bernoulli numbers into mathematics3. Within his
posthumous book of 1713, The Art of Conjecturing [3, vol. 3, pp. 164–167],
appears a section on A Theory of Permutations and Combinations. Here
one finds him first list the formulas for Sums of Powers up to exponent ten
(using the notation

∫
for the discrete sum from 1 to n), and then claim a

pattern, to wit4:
3The evidence suggests that around the same time, Takakazu Seki (1642?–1708) in

Japan also discovered the same numbers [25, 27].
4There is an error in the original published Latin table of sums of powers formulas.

The last coefficient in the formula for
R

n9 should be − 3
20

, not − 1
12

; we have corrected
this here.
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∫
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∫
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3
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6
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1
2
n5 +

5
12
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nn.
∫

n6 =
1
7
n7 +

1
2
n6 +

1
2
n5 ∗ −1

6
n3 ∗+

1
42

n.
∫

n7 =
1
8
n8 +

1
2
n7 +

7
12

n6 ∗ − 7
24

n4 ∗+
1
12

nn.
∫

n8 =
1
9
n9 +

1
2
n8 +

2
3
n7 ∗ − 7

15
n5 ∗+

2
9
n3 ∗ − 1

30
n.

∫
n9 =

1
10

n10 +
1
2
n9 +

3
4
n8 ∗ − 7

10
n6 ∗+

1
2
n4 ∗ − 3

20
nn.

∫
n10 =

1
11

n11 +
1
2
n10 +

5
6
n9 ∗ −1n7 ∗+1n5 ∗ −1

2
n3 ∗+

5
66

n.

Indeed, a pattern can be seen in the progressions herein which can be continued
by means of this rule: Suppose that c is the value of any power; then the sum
of all nc or∫

nc =
1

c + 1
nc+1 +

1
2
nc +

c

2
Anc−1 +

c · c− 1 · c− 2
2 · 3 · 4 Bnc−3

+
c · c− 1 · c− 2 · c− 3 · c− 4

2 · 3 · 4 · 5 · 6 Cnc−5

+
c · c− 1 · c− 2 · c− 3 · c− 4 · c− 5 · c− 6

2 · 3 · 4 · 5 · 6 · 7 · 8 Dnc−7 . . . ,

where the value of the power n continues to decrease by two until it reaches n
or nn. The uppercase letters A, B, C, D, etc., in order, denote the coefficients

of the final term of

∫
nn,

∫
n4,

∫
n6,

∫
n8, etc., namely

A =
1
6
, B = − 1

30
, C =

1
42

, D = − 1
30

.

These coefficients are such that, when arranged with the other coefficients of
the same order, they add up to unity: so, for D, which we said signified − 1

30 ,
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we have

1
9

+
1
2

+
2
3
− 7

15
+

2
9
(+D)− 1

30
= 1.

At this point we modern readers could conceivably exhibit great ret-
rospective prescience, anticipate Euler’s broader context of

∑n
i=1 f(i), for

which Bernoulli’s claimed summation formula above engages test functions
of the form f(x) = xc, and venture a rash generalization:

n∑

i=1

f(i) ≈ C +
∫ n

f(x)dx +
f(n)

2
+ A

f ′(n)
2!

+ B
f ′′′(n)

4!
+ · · · .

This formula is what Euler discovered in the early 1730s (although he
was apparently unaware of Bernoulli’s claim until later). Euler’s summa-
tion formula captures the delicate details of the general connection between
integration and discrete summation, and subsumes and resolves the two-
thousand year old quest for sums of powers formulas as a simple special
case. In what follows I will focus on just a few highlights from Euler.

4 The Basel Problem and the summation formula

“Euler calculated without any apparent effort, just as men breathe, as eagles
sustain themselves in the air.”, Arago. [28, p. 354]

Around the year 1730, the 23-year old Euler, along with his frequent cor-
respondents Christian Goldbach (1690–1764) and Daniel Bernoulli (1700–
1782), developed ways to find increasingly accurate fractional or decimal
estimates for the sum of the reciprocal squares. But highly accurate esti-
mates were challenging, since the series converges very slowly. They were
likely trying to guess the exact value of the sum, hoping to recognize that
their approximations hinted something familiar, perhaps involving π, like
Leibniz’s series which had summed to π/4. Euler hit gold with the discov-
ery of his summation formula. One of its first major uses was in a paper
submitted to the St. Petersburg Academy of Sciences on the 13th of Octo-
ber, 1735, in which he approximated the sum correctly to twenty decimal
places. Only seven and a half weeks later Euler astonished his contempo-
raries with another paper, solving the famous Basel Problem completely,
by demonstrating with a completely different method that the precise sum
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of the series is π2/6: “Now, however, quite unexpectedly, I have found an
elegant formula for 1 + 1

4 + 1
9 + 1

16+ etc., depending upon the quadrature
of the circle [i.e., upon π]” [26, p. 261]. Johann Bernoulli reacted “And so
is satisfied the burning desire of my brother [Jakob] who, realizing that the
investigation of the sum was more difficult than anyone would have thought,
openly confessed that all his zeal had been mocked. If only my brother were
alive now” [28, p. 345].

Much of Euler’s Institutiones Calculi Differentialis, written two decades
later, is focused on the relationship between differential calculus and infinite
series, unifying his many discoveries in a single exposition. He devotes Chap-
ters 5 and 6 of Part Two to the summation formula and a treasure trove of
applications. In Chapter 5 Euler derives his summation formula, analyzes
the generating function for Bernoulli numbers in terms of transcendental
functions, derives several properties of Bernoulli numbers, shows that they
grow supergeometrically, proves Bernoulli’s formulas for sums of powers, and
finds the exact sums of all infinite series of reciprocal even powers in terms
of Bernoulli numbers. Chapter 6 applies the summation formula to approx-
imate harmonic partial sums and the associated “Euler” constant γ, sums
of reciprocal powers, π, and sums of logarithms, leading to approximations
for large factorials and binomial coefficients.

I will guide the reader through glimpses of just a few key passages from
the translation. The reader may find more background, annotation, and ex-
ercises in [18], or explore my more extensive translation on the web [10]. The
passages displayed below contain Euler’s derivation, the relation to Bernoulli
numbers, application to reciprocal squares, and to sums of logarithms, large
factorials, and binomials, with mention of other omitted passages. Each ap-
plication uses the summation formula to a fundamentally different purpose.
The complete glory of Euler’s chapters is still available only in the original
Latin [7, vol. 10] or an old German translation [8] (poorly printed in Frak-
tur); I cannot encourage the reader too strongly to revel in the beauty of
the original.

5 Euler’s derivation

Euler’s derivation of the summation formula rests on two ideas. First, the
use of what we now call Taylor series from calculus, combined with adeptness
with summations, to relate the sum of the values of a function at finitely
many successive integers to similar sums involving the derivatives of the
function. It may seem that this just makes things more complicated, but

7



his second idea will remedy this.

Leonhard Euler, from
Foundations of Differential Calculus

Part Two, Chapter 5
On Finding Sums of Series from the General Term

105. Consider a series whose general term, belonging to the index x, is y,
and whose preceding term, with index x−1, is v; because v arises from y, when
x is replaced by x− 1, one has5

v = y − dy

dx
+

ddy

2dx2
− d3y

6dx3
+

d4y

24dx4
− d5y

120dx5
+ etc.

If y is the general term of the series

1 2 3 4 · · · x− 1 x
a + b + c + d + · · · + v + y

and if the term belonging to the index 0 is A, then v, as a function of x, is the
general term of the series

1 2 3 4 5 · · · x
A + a + b + c + d + · · · + v ,

so if Sv denotes the sum of this series, then Sv = Sy − y + A.
106. Because

v = y − dy

dx
+

ddy

2dx2
− d3y

6dx3
+ etc.,

one has, from the preceding,

Sv = Sy − S
dy

dx
+ S

ddy

2dx2
− S

d3y

6dx3
+ S

d4y

24dx4
− etc.,

5Euler expresses the value v of his function at x − 1 in terms of its value y at x and
the values of all its derivatives, also implicitly evaluated at x. This uses Taylor series with
increment −1. Of course it seems that he is tacitly assuming that this all makes sense,
i.e., that his function is infinitely differentiable, and perhaps also that the Taylor series
converges and equals its intended value. Note also that the symbols x and y are being
used, respectively, to indicate the final value of an integer index and the final value of
the function evaluated there, and also more generally as a variable and function of that
variable. Today we would find this much too confusing to dare write this way.
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and, because Sv = Sy − y + A,

y −A = S
dy

dx
− S

ddy

2dx2
+ S

d3y

6dx3
− S

d4y

24dx4
+ etc.,

or equivalently

S
dy

dx
= y −A + S

ddy

2dx2
− S

d3y

6dx3
+ S

d4y

24dx4
− etc.

Thus if one knows the sums of the series, whose general terms are ddy
dx2 , d3y

dx3 , d4y
dx4 ,

etc., one can obtain the summative term of the series whose general term is dy
dx .

The constant A must then be such that the summative term S dy
dx disappears

when x = 0 ...
Euler next applies this equation recursively, in §107–108, to demonstrate

how one can obtain individual sums of powers formulas, since in these cases
the derivatives will eventually vanish. He then continues with his second
idea. The result is the summation formula.

109. ... if one sets dy
dx = z, then

Sz =
∫

zdx +
1
2
S

dz

dx
− 1

6
S

ddz

dx2
+

1
24

S
d3z

dx3
− etc.,

adding to it a constant value such that when x = 0, the sum Sz also vanishes.
...

110. But if in the expressions above one substitutes the letter z in place
of y, or if one differentiates the preceding equation, which yields the same, one
obtains

S
dz

dx
= z +

1
2
S

ddz

dx2
− 1

6
S

d3z

dx3
+

1
24

S
d4z

dx4
− etc.;

but using dz
dx in place of y one obtains

S
ddz

dx2
=

dz

dx
+

1
2
S

d3z

dx3
− 1

6
S

d4z

dx4
+

1
24

S
d5z

dx5
− etc.

... and so forth indefinitely....
111. Now when these values for S dz

dx , S ddz
dx2 , S d3z

dx3 are successively substi-
tuted in the expression

Sz =
∫

zdx +
1
2
S

dz

dx
− 1

6
S

ddz

dx2
+

1
24

S
d3z

dx3
− etc.,
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one finds an expression for Sz, composed of the terms
∫

zdx, z, dz
dx , ddz

dx2 , d3z
dx3

etc., whose coefficients are easily obtained as follows. One sets

Sz =
∫

zdx + αz +
βdz

dx
+

γddz

dx2
+

δd3z

dx3
+

εd4z

dx4
+ etc.,

and substitutes for these terms the values they have from the previous series,
yielding

∫
zdx = Sz− 1

2S dz
dx + 1

6S ddz
dx2 − 1

24S d3z
dx3 + 1

120S d4z
dx4 − etc.

αz = + αS dz
dx − α

2 S ddz
dx2 + α

6 S d3z
dx3 − α

24S d4z
dz4 + etc.

βdz
dx = βS ddz

dx2 − β
2 S d3z

dx3 + β
6 S d4z

dx4 − etc.

γddz
dx2 = γS d3z

dx3 − γ
2S d4z

dx4 + etc.

δd3z
dx3 = δ S d4z

dx4 − etc.

etc.

Since these values, added together, must produce Sz, the coefficients α, β, γ,
δ etc. are ...

112. ...

α =
1
2
,β =

α

2
− 1

6
=

1
12

, γ =
β

2
− α

6
+

1
24

= 0,

δ =
γ

2
− β

6
+

α

24
− 1

120
= − 1

720
, ε =

δ

2
− γ

6
+

β

24
− α

120
+

1
720

= 0 etc.,

and if one continues in this fashion one finds that alternating terms vanish.

6 Connection to Bernoulli numbers and sums of
powers

Before Euler shows how to apply his summation formula to derive new re-
sults for various choices of the function z, and of the initial and final in-
dices in a summation, he studies intensively in §112–120 the coefficients
α, β, γ, . . . , and discovers their properties and intimate connections with
familiar functions. In particular, he shows how their generating function re-
lates directly to the transcendental functions of calculus. Euler proves that
alternate coefficients vanish, and that those remaining alternate in sign.
For this he investigates a power series solution to the nonlinear differential
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equation which the cotangent function satisfies by dint of its derivative for-
mula. The differential equation produces quadratic recursive formulas for
the coefficients. Euler also explores the number theoretic properties of the
coefficients, including the growth and prime factorizations of their numera-
tors and denominators, some of which we will see below.

Caution: In the process of distilling the summation formula in terms of
Bernoulli numbers, Euler switches the meaning of the Greek letters α, β, γ,
δ,..., and the formula now takes revised form:

121. ... If one finds the values of the [redefined] letters α, β, γ, δ, etc.
according to this rule, which entails little difficulty in calculation, then one can
express the summative term of any series, whose general term = z corresponding
to the index x, in the following fashion:

Sz =
∫

zdx +
1
2
z +

αdz

1 · 2 · 3 · dx
− βd3z

1 · 2 · 3 · 4 · 5dx3
+

γd5z

1 · 2 · · · 7dx5

− δd7z

1 · 2 · · · 9dx7
+

εd9z

1 · 2 · · · 11dx9
− ζd11z

1 · 2 · · · 13dx11
+ etc. ...

122. These numbers have great use throughout the entire theory of series.
First, one can obtain from them the final terms in the sums of even powers,
for which we noted above (in §63 of part one) that one cannot obtain them, as
one can the other terms, from the sums of earlier powers. For the even powers,
the last terms of the sums are products of x and certain numbers, namely for
the 2nd, 4th, 6th, 8th, etc., 1

6 , 1
30 , 1

42 , 1
30 etc. with alternating signs. But

these numbers arise from the values of the letters α, β, γ, δ, etc., which we
found earlier, when one divides them by the odd numbers 3, 5, 7, 9, etc. These
numbers are called the Bernoulli numbers after their discoverer Jakob Bernoulli,
and they are

α
3 = 1

6 = A ι
19 = 43867

798 = I

β
5 = 1

30 = B χ
21 = 174611

330 = K = 283·617
330

γ
7 = 1

42 = C λ
23 = 854513

138 = L = 11·131·593
2·3·23

δ
9 = 1

30 = D µ
25 = 236364091

2730 = M

ε
11 = 5

66 = E ν
27 = 8553103

6 = N = 13·657931
6

ζ
13 = 691

2730 = F ξ
29 = 23749461029

870 = O

η
15 = 7

6 = G π
31 = 8615841276005

14322 = P

θ
17 = 3617

510 = H etc.
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Euler’s very first application of the Bernoulli numbers, in §124–125, is
to solve a problem dear to his heart, determining the precise sums of all
infinite series of reciprocal even powers. His result (using today’s notation
A =B2, B =−B4, C =B6, . . . ) is that

∞∑

i=1

1
i2n

=
(−1)n+1 B2n22n−1

(2n)!
π2n for all n ≥ 1.

Since these sums approach one as n grows, he also obtains, in §129, an
asymptotic understanding of how Bernoulli numbers grow:

B2n+2

B2n
≈ −(2n + 2) (2n + 1)

4π2
≈ −n2

π2
.

Thus he comments that they “form a highly diverging sequence, which grows
more strongly than any geometric sequence of growing terms”.

This completes Euler’s analysis of the Bernoulli numbers themselves.
Now he is ready to turn his summation formula towards applications. He
ends Chapter 5 with applications in which the summation formula is finite
(§131), including that of a pure power function, which proves Bernoulli’s
conjectured sums of powers formulas (§132).

7 “Until it begins to diverge”

Chapter 6 uses the summation formula to make approximations even when
it diverges, which it does in almost all interesting applications.

Part Two, Chapter 6
On the summing of progressions via infinite series

140. The general expression, that we found in the previous chapter for the
summative term of a series, whose general term corresponding to the index x
is z, namely

Sz =
∫

zdx +
1
2
z +

Adz

1 · 2dx
− Bd3z

1 · 2 · 3 · 4dx3
+

Cd5z

1 · 2 · · · 6dx5
− etc.,

actually serves to determine the sums of series, whose general terms are integral
rational functions6 of the index x, because in these cases one eventually arrives

6By this he means polynomials.
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at vanishing differentials. On the other hand, if z is not such a function of x,
then the differentials continue without end, and there results an infinite series
that expresses the sum of the given series up to and including the term whose
index = x. The sum of the series, continuing without end, is thus given by
taking x = ∞, and one finds in this way another infinite series equal to the
original. ...

142. Since when a constant value is added to the sum, so that it vanishes
when x = 0, the true sum is then found when x is any other number, then it
is clear that the true sum must likewise be given, whenever a constant value
is added that produces the true sum in any particular case. Thus suppose it
is not obvious, when one sets x = 0, what value the sum assumes and thus
what constant must be used; one can substitute other values for x, and through
addition of a constant value obtain a complete expression for the sum. Much
will become clear from the following.

For a particular choice of antiderivative
∫

zdx, the constant which needs
determining here is today called the “Euler-Maclaurin constant” for the
function z and a chosen antiderivative

∫
zdx.

There follow Euler’s §142a–144, in which he makes the first application
of his summation formula to an infinite series, the diverging harmonic se-
ries

∑∞
i=1 1/i. For this particular series, the Euler-Maclaurin constant in

his summation formula will be the limiting difference between
∑x

i=1 1/i and
ln x. Today we call this particular number just “Euler’s constant”, and de-
note it by γ. It is arguably the third most important special constant in
mathematics after π and e. Euler shows how to extract from the summa-
tion formula an approximation of γ accurate to 15 places, and then easily
obtains the sum of the first thousand terms of the diverging harmonic se-
ries to 13 places (see [10]). In fact it is clear from what he writes that one
could use his approach to approximate γ to whatever accuracy desired, and
then apply the summation formula to find the value of arbitrarily large fi-
nite harmonic sums to that same accuracy. I will discuss in a moment the
conundrum that he can obtain arbitrarily accurate approximations for the
Euler-Maclaurin constant of a function and a chosen antiderivative from a
diverging summation formula!

We continue on to see exactly how Euler applies the summation formula
to that old puzzle, the Basel Problem.

148. After considering the harmonic series we wish to turn to examining the
series of reciprocals of the squares, letting

s = 1 +
1
4

+
1
9

+
1
16

+ · · ·+ 1
xx

.
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Since the general term of this series is z = 1
xx , then

∫
zdx = −1

x , the differentials
of z are

dz

2dx
= − 1

x3
,

ddz

2 · 3dx2
=

1
x4

,
d3z

2 · 3 · 4dx3
= − 1

x5
etc.,

and the sum is

s = C − 1
x

+
1

2xx
− A

x3
+

B

x5
− C

x7
+

D

x9
− E

x11
+ etc.,

where the added constant C is determined from one case in which the sum is
known. We therefore wish to set x = 1. Since then s = 1, one has

C = 1 + 1− 1
2

+ A−B + C−D + E− etc.,

but this series alone does not give the value of C, since it diverges strongly.

On the face of it, these formulas seem both absurd and useless. The
expression Euler obtains for the Euler-Maclaurin constant C is clearly a
divergent series. In fact the summation formula here diverges for every
x because of the supergeometric growth established for Bernoulli numbers.
Euler, however, is not fazed: he has a plan for obtaining from such divergent
series highly accurate approximations for both very large finite and infinite
series.

Euler’s idea is to add up the terms in the summation formula only “until
it begins to diverge”. For those unfamiliar with the theory of divergent series,
this seems preposterous, but in fact it has sound theoretical underpinnings
established much later; Euler’s approach was ultimately fully vindicated by
the modern theory of asymptotic series [12, 13, 15, 19]. Euler himself was
probably confident of his results, despite the apparently shaky foundations
in divergent series, because he was continually checking and rechecking his
results by a variety of theoretical and computational methods, boosting his
confidence in their correctness from many different angles. Let us see how
Euler continues analyzing the sum of reciprocal squares, begun above.

First he recalls that for this particular function, he already knows the
value of C by other means.

Above we demonstrated that the sum of the series to infinity is = ππ
6 , and

therefore setting x = ∞, and s = ππ
6 , we have C = ππ

6 , because then all other
terms vanish. Thus it follows that

1 + 1− 1
2

+ A−B + C−D + E−etc. =
ππ

6
.
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Next Euler pretends he doesn’t already know the sum of the infinite series
of reciprocal squares, and approximates it using his summation formula,
thereby performing a cross-check on both methods.

149. If the sum of this series were not known, then one would need to
determine the value of the constant C from another case, in which the sum
were actually found. To this aim we set x = 10 and actually add up ten terms,
obtaining7

s = 1, 549767731166540690 .

Further, add 1
x = 0, 1

subtr. 1
2xx = 0, 005

1, 644767731166540690

add A
x3 = 0, 000166666666666666

1, 644934397833207356

subtr. B
x5 = 0, 000000333333333333

1, 644934064499874023

add C
x7 = 0, 000000002380952381

1, 644934066880826404

subtr. D
x9 = 0, 000000000033333333

1, 644934066847493071

add E
x11 = 0, 000000000000757575

1, 644934066848250646

subtr. F
x13 = 0, 000000000000025311

1, 644934066848225335

add G
x15 = 0, 000000000000001166

subtr. H
x17 = 71

1, 644934066848226430 = C.

This number is likewise the value of the expression ππ
6 , as one can find by

calculation from the known value of π. From this it is clear that, although the
series A, B, C, etc. diverges, it nevertheless produces a true sum.

7Euler uses commas (as still done in Europe today) rather than points, for separating
the integer and fractional parts of a decimal.
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So, on the one hand the summation formula diverges for every x, and yet
on the other it can apparently be used to make very close approximations,
in fact arbitrarily close approximations, to C. How can this be?

Note that the terms Euler actually calculates appear to decrease rapidly,
giving the initial appearance, albeit illusory, that the series converges. Ex-
amining the terms more closely, one can see evidence that their decrease is
slowing in a geometric sense, which hints at the fact that the series actually
diverges. Recall that Euler intends to sum only “until it begins to diverge”.
How does he decide when this occurs? Notice that the series alternates in
sign, and thus the partial sums bounce back and forth, apparently at first
narrowing in, then broadening out as the terms themselves eventually in-
crease due to rapid growth of the Bernoulli numbers. Euler knows to stop
before the smallest bounce, with the expectation that the true sum he seeks
always lies between any partial sum and the next one, and is thus bracketed
most accurately if he stops just before the smallest term included.

Much later, through the course of the nineteenth century, mathemati-
cians would wrestle with the validity, theory and usefulness of divergent
series. Two (divergent) views reflected this struggle, and exemplify the evo-
lution of mathematics:

“The divergent series are the invention of the devil, and it
is a shame to base on them any demonstration whatsoever. By
using them, one may draw any conclusion he pleases and that is
why these series have produced so many fallacies and so many
paradoxes. ...I have become prodigiously attentive to all this, for
with the exception of the geometrical series, there does not exist
in all of mathematics a single infinite series the sum of which
has been determined rigorously. In other words, the things which
are most important in mathematics are also those which have
the least foundation. ... That most of these things are correct in
spite of that is extraordinarily surprising. I am trying to find a
reason for this; it is an exceedingly interesting question.”, Niels
Abel (1802–1829), 1826 [17, p. 973f].

“The series is divergent; therefore we may be able to do some-
thing with it”, Oliver Heaviside (1850–1925) [17, p. 1096].

Euler, long before this, was confident in proceeding according to his
simple dictum “until it begins to diverge”. Indeed, it is astounding but true
that the summation formula does behave exactly as Euler used it for many
functions, including all the ones Euler was interested in. Today we know for
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certain that such “asymptotic series” indeed do bracket the desired answer,
and diverge more and more slowly for larger and larger values of x, thus are
extremely useful for approximations [13, 15, 19][17, ch. 47].

One can explore the interplay of calculation versus accuracy achieved
by different choices for x. A smaller choice for x will cause the summation
formula to begin to diverge sooner, and with a larger final bounce, yielding
less accuracy. While a larger x will ensure much more rapid achievement of a
given level of accuracy, and greater bounding accuracy (as small as desired)
for the answer, at the expense of having to compute a longer partial sum
on the left hand side to get the calculation off the ground. Asymptotic
series have become very important in applications of differential equations
to physical problems [17, ch. 47].

Euler’s next application of the summation formula, in §150–153, is to ap-
proximate the sums of reciprocal odd powers. I remarked above that Euler’s
very first application of the Bernoulli numbers was to determine the precise
sums of all infinite series of reciprocal even powers in terms of Bernoulli
numbers and π. Naturally he also would have loved to find similar formu-
las for the reciprocal odd powers, and he explores this at length using the
summation formula. He produces highly accurate decimal approximations
for sums of reciprocal odd powers all the way through the fifteenth, hop-
ing to see a pattern analogous to the even powers, namely simple fractions
times the relevant power of π. The first such converging series is the sum
of reciprocal cubes

∑∞
i=1 1/i3. Euler computes it accurately to seventeen

decimal places. He is disappointed, however, to find that it is not near an
obvious rational multiple of π3, nor does he have better luck with the other
odd powers. Even today we know little about these sums of odd powers,
although not for lack of trying.

Following this, in §154–156 Euler approximates π to seventeen decimal
places using the inverse tangent and cotangent functions with the summation
formula. He actually expresses his own amazement that one can approximate
π so accurately with such an easy calculation!

8 How to determine (or not) factorials

I will showcase next Euler’s efficacous use of the summation formula to ap-
proximate finite sums of logarithms, and thus by exponentiating, to approxi-
mate very large factorials via the formula now known as Stirling’s asymptotic
approximation. Notice particularly Euler’s ingenious determination of the
Euler-Maclaurin constant in the summation formula, from Wallis’ infinite
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product for π.
With the aid of a computational engine I will also briefly explore whether

the summation formula can determine a factorial precisely, yielding surpris-
ing results.

To set the stage for Euler, notice that to estimate a factorial, one can
estimate log (x!) = log 1 + log 2 + · · · + log x, using any base, provided one
also knows how to find antilogarithms.

157. Now we want to use for z transcendental functions of x, and take
z = lx for summing hyperbolic8 logarithms, from which the ordinary can easily
be recovered, so that

s = l1 + l2 + l3 + l4 + · · ·+ lx.

Because z = lx,
∫

zdx = xlx− x,

since its differential is dxlx. Then

dz

dx
=

1
x

,
ddz

dx2
= − 1

x2
,

d3z

1 · 2dx3
=

1
x3

,
d4z

1 · 2 · 3dx4
= − 1

x4
,

d5z

1 · 2 · 3 · 4dx5
=

1
x5

, etc.

One concludes that

s = xlx− x +
1
2
lx +

A

1 · 2x
− B

3 · 4x3
+

C

5 · 6x5
− D

7 · 8x7
+ etc. + Const.

But for this constant one finds, when one sets x = 1, because then s = l1 = 0,

C = 1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 − etc.,

a series that, due to its great divergence, is quite unsuitable even for determining
the approximate value of C.

158. Nevertheless we can not only approximate the correct value of C, but
can obtain it exactly, by considering Wallis’s expression for π provided in the
Introductio [6, vol. 1, chap. 11]. This expression is

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10 · 12 · etc.
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11 · 11 · etc.

8Think about why Euler calls this the “hyperbolic” logarithm.
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Taking logarithms, one obtains from this

lπ − l2 = 2l2 + 2l4 + 2l6 + 2l8 + 2l10 + l12 + etc.

−l1− 2l3− 2l5− 2l7− 2l9− 2l11− etc.

Setting x = ∞ in the assumed series, we have

l1 + l2 + l3 + l4 + · · ·+ lx = C +
(
x + 1

2

)
lx− x,

thus l1 + l2 + l3 + l4 + · · ·+ l2x = C +
(
2x + 1

2

)
l2x− 2x

and l2 + l4 + l6 + l8 + · · ·+ l2x = C +
(
x + 1

2

)
lx + xl2− x,

and therefore l1 + l3 + l5 + l7 + · · ·+ l (2x− 1) = xlx +
(
x + 1

2

)
l2− x.

Thus because

lπ
2 = 2l2 + 2l4 + 2l6 + · · · + 2l2x− l2x

− 2l1− 2l3− 2l5− · · · − 2l (2x− 1) ,

letting x = ∞ yields

l
π

2
= 2C + (2x + 1) lx + 2xl2− 2x− l2− lx− 2xlx− (2x + 1) l2 + 2x,

and therefore

l
π

2
= 2C − 2l2, thus 2C = l2π and C =

1
2
l2π,

yielding the decimal fraction representation

C = 0, 9189385332046727417803297,

thus simultaneously the sum of the series

1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 −
E

9 · 10
+ etc. =

1
2
l2π.

159. Since we now know the constant C = 1
2 l2π, one can exhibit the sum

of any number of logarithms from the series l1 + l2 + l3+ etc. If one sets

s = l1 + l2 + l3 + l4 + · · ·+ lx,

then

s =
1
2
l2π +

(
x +

1
2

)
lx− x +

A

1 · 2x
− B

3 · 4x3
+

C

5 · 6x5
− D

7 · 8x7
+ etc.
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if the proposed logarithms are hyperbolic; if however the proposed logarithms
are common, then one must take common logarithms also in the terms 1

2 l2π +
(x + 1

2)lx for l2π and lx, and multiply the remaining terms

−x +
A

1 · 2x
− B

3 · 4x3
+ etc.

of the series by 0, 434294481903251827 = n. In this case the common loga-
rithms are

lπ = 0, 497149872694133854351268
l2 = 0, 301029995663981195213738

l2π = 0, 798179868358115049565006
1
2
l2π = 0, 399089934179057524782503.

Example.
Find the sum of the first thousand common logarithms

s = l1 + l2 + l3 + · · ·+ l1000.

So x = 1000, and

lx = 3, 0000000000000,

and thus xlx = 3000, 0000000000000
1
2 lx = 1, 5000000000000

1
2 l2π = 0, 3990899341790

3001, 8990899341790

subtr. nx = 434, 2944819032518
2567, 6046080309272.

Then
nA
1·2x = 0, 0000361912068

subtr. nB
3·4x3 = 0, 0000000000012

0, 0000361912056

add 2567, 6046080309272
the sum sought s = 2567, 6046442221328.
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Now because s is the logarithm of a product of numbers

1 · 2 · 3 · 4 · 5 · 6 · · · 1000,

it is clear that this product, if one actually multiplies it out, consists of 2568
figures, beginning with the figures 4023872, with 2561 subsequent figures.

One wonders how accurate such factorial approximations from the sum-
mation formula can actually be. Exponentiating Euler’s summation formula
above for a sum of logarithms produces the Stirling asymptotic approxima-
tion:

x! ≈
√

2πxxx

ex
e

�
A

1·2x
− B

3·4x3 + C
5·6x5− D

7·8x7 +···
�
.

Since the summation formula diverges for each x, the accuracy of this ap-
proximation is theoretically limited. Yet the value sought always lies be-
tween those of successive partial sums. Moreover, from the asymptotic
growth rate of Bernoulli numbers obtained earlier, approximately the first
πx terms in the exponent might be expected to decrease (recall that for
x = 1000 Euler used only two terms).

To explore the accuracy achievable with this formula, let us denote by
S(x,m) the approximation to x! using the first m terms in the exponent.
Beginning modestly with x = 10, calculations with Maple show that 3628800
is the only integer between S(10, 2) and S(10, 3), thus determining 10! on the
nose. So although the summation formula has limited accuracy, it suffices
to determine easily the integer 10! uniquely.

And for x = 50, one finds that
30414093201713378043612608166064768844377641568960512000000000000
is the only integer between S(50, 26) and S(50, 27), thus producing all 65
digits of 50!. This striking accuracy leads us to ask:

Question: Can one obtain the exact value of any factorial this way?
There is an interplay here as x grows. Certainly the exponent becomes

more accurately known for larger x, using a given number of terms, and
in fact more precisely known from the diverging series generally, which im-
proves for around xπ terms. On the other hand, it is then being expo-
nentiated, and finally, multiplied times something growing, to produce the
factorial approximation. So it is not so clear whether the factorial itself will
always be sufficiently trapped to determine its integer value.

Continuing experimentally, let us compare with x = 100. First, note
that 100! is approximately 9.33 × 10157. Using the same number of terms,
27, as was needed above to determine uniquely all 65 digits of 50!, one finds
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that S(100, 27) agrees with 100! for the first 82 digits. Thus it is giving
more digits than when x = 50, but does not yet determine all the digits
of 100!. Further calculation shows that 100! is indeed the unique integer
first bracketed by S(100, 74) and S(100, 75). In fact, one expects further
improvement for 100π terms. While one still seems to have lots of terms to
spare, one worries that, as x increases, with the number of decreasing terms
in the summation only increasing linearly, i.e., as πx, the number of terms
needed to bracket the factorial uniquely may be growing faster than this. In
particular, when one doubled x from 50 to 100, the number of terms needed
to determine the factorial increased from 27 to 75, more than doubling.

Both my theoretical analysis and further Maple computations ultimately
confirm this fear, eventually answering the question in the negative. But the
size of the factorials which are actually uniquely determined as integers by
Euler’s summation formula before it cannot keep up with all the digits is
staggering, and includes every one of the 2568 digits that Euler determined
1000! has. I will provide a closer analysis and resolution of this phenomenon
in an extended version of this paper.

9 Large binomials

In our last excerpt, Euler applies the summation formula to estimate the
size of large binomial coefficients. I translate just one of his methods here,
in which he coalesces two summation series term by term. As a sample
application, Euler approximates the ratio

(
100
50

)
/2100, despite the huge size

of its parts, thus closely approximating the probability that if one tosses 100
coins, exactly equal numbers will land heads and tails.

160. By means of this summation of logarithms, one can approximate the
product of any number of factors, that progress in the order of the natural
numbers. This can be especially helpful for the problem of finding the middle or
largest coefficient of any power in the binomial (a+ b)m, where one notes that,
when m is an odd number, one always has two equal middle coefficients, which
taken together produce the middle coefficient of the next even power. Thus
since the largest coefficient of any even power is twice as large as the middle
coefficient of the immediately preceding odd power, it suffices to determine the
middle largest coefficient of an even power. Thus we have m = 2n with middle
coefficient expressed as

2n (2n− 1) (2n− 2) (2n− 3) · · · (n + 1)
1 · 2 · 3 · 4 · · ·n .
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Setting this = u, one has

u =
1 · 2 · 3 · 4 · 5 · · · 2n

(1 · 2 · 3 · 4 · · ·n)2
,

and taking logarithms

lu = l1 + l2 + l3 + l4 + l5 + · · · l2n

−2l1− 2l2− 2l3− 2l4− 2l5− · · · − 2ln.

161. The sum of hyperbolic logarithms is

l1 + l2 + l3 + l4 + · · ·+ l2n =
1
2
l2π +

(
2n +

1
2

)
ln +

(
2n +

1
2

)
l2− 2n

+
A

1 · 2 · 2n
− B

3 · 4 · 23n3
+

C

5 · 6 · 25n5
− etc.

and

2l1 + 2l2 + 2l3 + 2l4 + · · ·+ 2ln

= l2π + (2n + 1) ln− 2n +
2A

1 · 2n
− 2B

3 · 4n3
+

2C

5 · 6n5
− etc.

Subtracting this expression from the former yields

lu = −1
2
lπ − 1

2
ln + 2nl2 +

A

1 · 2 · 2n
− B

3 · 4 · 23n3
+

C

5 · 6 · 25n5
− etc.

− 2A

1 · 2n
+

2B

3 · 4n3
− 2C

5 · 6n5
+ etc.,

and collecting terms in pairs

lu = l
22n

√
nπ

− 3A

1 · 2 · 2n
+

15B

3 · 4 · 23n3
− 63C

5 · 6 · 25n5
+

255D

7 · 8 · 27n7
− etc.

...
162. ...

Second Example
Find the ratio of the middle term of the binomial (1 + 1)100 to the sum 2100

of all the terms.
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For this we wish to use the formula we found first,

lu = l
22n

√
nπ

− 3A

1 · 2 · 2n
+

15B
3 · 4 · 23n3

− 63C

5 · 6 · 25n5
+ etc.,

from which, setting 2n = m, in order to obtain the power (1 + 1)m, and after
substituting the values of the letters A, B, C, D etc., one has

lu = l
2m

√1
2mπ

− 1
4m

+
1

24m3
− 1

20m5
+

17
112m7

− 31
36m9

+
691

88m11
− etc.

Since the logarithms here are hyperbolic, one multiplies by

k = 0, 434294481903251,

in order to change to tables, yielding

lu = l
2m

√1
2mπ

− k

4m
+

k

24m3
− k

20m5
+

17k
112m7

− 31k
36m9

+ etc.,

Now since u is the middle coefficient, the ratio sought is 2m : u, and

l
2m

u
= l
√1

2
mπ +

k

4m
− k

24m3
+

k

20m5
− 17k

112m7
+

31k
36m9

− 691k

88m11
+ etc.

Now, since the exponent m = 100,

k

m
= 0, 0043429448,

k

m3
= 0, 0000004343,

k

m5
= 0, 0000000000,

yielding

k
4m = 0, 0010857362
k

24m3 = 0, 0000000181

0, 0010857181 .

Further lπ = 0, 4971498726

l 1
2m = 1, 6989700043

l 1
2mπ = 2, 1961198769

l
√1

2mπ = 1, 0980599384
k

4m − k
24m3 + etc. = 0, 0010857181

1, 0991456565 = l 2100

u .

Thus 2100

u = 12, 56451, and the middle term in the expanded power (1 + 1)m

is to the sum of all the terms 2100 as 1 is to 12, 56451.
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