Chapter 8
part 2
Earthquakes and the Earth’s Interior

A Violent Pulse: Earthquakes

What is an Earthquake?

• “Earth shaking caused by a rapid release of energy.”
 – Energy buildup due to tectonic stresses.
 – Cause rocks to break.
 – Energy moves outward as an expanding sphere of waves.
 – This waveform energy can be measured around the globe.
• Earthquakes destroy buildings and kill people.
 – 3.5 million deaths in the last 2000 years.
• Earthquakes are common.

Seismicity

• Seismicity (‘quake or shake) cause by...
 – Motion along a newly formed crustal fracture (or, fault).
 – Motion on an existing fault.
 – A sudden change in mineral structure.
 – Inflation of a magma chamber.
 – Volcanic eruption.
 – Giant landslides.
 – Meteorite impacts.
 – Nuclear detonations

Faults and Earthquakes

• Most earthquakes occur along faults.
 – Faults are breaks or fractures in the crust...
 – Across which motion has occurred.
• Over geologic time, faulting produces much change.
• The amount of movement is termed displacement.
 • Displacement is also called...
 – Offset, or
 – Slip
 • Markers may reveal the amount of offset.

Earthquake Concepts

• Focus (or Hypocenter) - The place within Earth where earthquake waves originate.
 – Usually occurs on a fault surface.
 – Earthquake waves expand outward from the hypocenter.
• Epicenter – Land surface above the focus hypocenter.
Faults and Fault Motion

- Faults are like planar breaks in blocks of crust.
- Most faults slope (although some are vertical).
- On a sloping fault, crustal blocks are classified as:
 - Footwall (block below the fault).
 - Hanging wall (block above the fault).
- Miners on a fault would:
 - Stand on the footwall.
 - Bump their heads on the hanging wall.

Fault Types

- Fault type based on relative block motion.
 - Normal fault
 - Hanging wall moves down.
 - Result from extension (stretching).
 - Reverse fault
 - Hanging wall moves up.
 - Result from compression (squeezing).
 - Thrust fault
 - Special kind of reverse fault.
 - Fault surface is at a low-angle.
 - Strike-slip fault
 - Blocks slide past one another.
 - No vertical block motion.

Faults and Fault Motion

- Faults are commonplace in the crust.
 - Active faults – On-going stresses produce motion.
 - Inactive faults – Motion occurred in the geologic past.
 - Displacement can be visible.
 - Fault trace – A surface tear.
 - Fault scarp – A small cliff.
 - Blind faults are invisible.

Fault Initiation (elastic rebound theory)

- Tectonic forces add stress to unbroken rocks.
- The rock deforms slightly (elastic strain).
- Continued stress cause more stress & cracks.
- Eventually, cracks grow to the point of failure.
- Elastic strain transforms into brittle deformation (rebounds), releasing earthquake energy.

Fault Motion

- Faults move in jumps (rebounds).
- Once motion starts, it quickly stops due to friction.
- Eventually, strain will build up again causing failure.
- This behavior is termed stick – slip behavior.
 - Stick – Friction prevents motion.
 - Slip – Friction briefly overwhelmed by motion.

Fault Motion

- When rocks break, stored elastic strain is released.
- This energy radiates outward from the hypocenter.
- The energy, as waves, generates vibrations.
- The vibrations cause motion, as when a bell is rung.
- Large earthquakes are often:
 - preceded by foreshocks, and...
 - Smaller quakes.
 - May signal larger event.
 - followed by aftershocks.
 - Smaller quakes.
 - Indicate readjustment.
Amount of Displacement

- Displacement scale varies.
 - Large events may rip large fault segments.
 - 100s of kilometers long
 - 10s of kilometers deep
 - Smaller events may result in more localized effects.
- Displacement maxima near focus / epicenter.
- Displacement diminishes with distance.
- Faulting changes landscapes.
 - Uplift
 - Subsidence
 - Offset
- Changes are measurable.
 - Interferometry

Seismic Waves

- Body Waves – Pass through Earth’s interior.
 - Compressional or Primary (P) waves
 - Push-pull (compress and expand) motion.
 - Travel through solids, liquids, and gases.
 - Fastest.
 - Shear or Secondary (S) waves
 - “Shaking” motion.
 - Travel only through solids; not liquids.
 - Slower.

Seismic Waves

- Surface Waves – Travel along Earth’s surface.
 - Love waves – s waves intersecting the surface.
 - Move back and forth like a writhing snake.
 - Rayleigh waves – p waves intersecting the surface.
 - Move like ripples on a pond.
- These waves are the slowest and most destructive.

Seismology

- Seismology is the study of earthquake waves.
- Seismographs - Instruments that record seismicity.
 - Record Earth motion in relation to a stationary mass or rotating drum.
 - Deployed worldwide.
 - Can detect earthquakes from around the entire planet.
 - Seismology reveals much about earthquakes.
 - Size (How big?)
 - Location (Where is it?)

Seismograph Operation

- Straight line = background.
- Arrival of 1st wave causes frame to sink (pen goes up).
- Next vibration causes opposite motion.
- Waves always arrive in sequence.
 - P-waves 1st
 - S-waves 2nd
 - Surface waves last.
- A seismogram measures...
 - Wave arrival times
 - Magnitude of ground motion.

Locating an Epicenter

- Locating an epicenter depends upon the different velocities of p and s waves.
- Because they travel at different velocities, they located by comparing p and s wave arrival times from a minimum of three seismic stations.
Locating an Epicenter

• First arrival of p and s waves compared for (at least) 3 stations.

• A travel-time graph plots the distance of each station to the epicenter.

Locating an Epicenter

• A circle with a radius equal to the distance to the epicenter is drawn around each station.

• Data from three stations needed.

• The point where three circles intersect is the epicenter.

Earthquake Size

• Two means of describing earthquake size
 – Intensity (Mercalli scale)
 – Magnitude (Richter & Moment)

• Mercalli Intensity Scale
 – Intensity – The degree of shaking based on damage (subjective scale).
 – Roman numerals assigned to different levels of damage.
 – Damage occurs in zones.
 – Damage diminishes in intensity with distance.

Earthquake Size

• Magnitude – The amount of energy released.
 – Maximum amplitude of ground motion from a seismogram.
 – Value is normalized for seismograph distance.

• Several magnitude scales.
 – Richter (most common)
 – Moment (most accurate)

• Magnitude scales are logarithmic.
 – Increase of 1 Richter unit = 10 fold increase in ground motion however this = a 30 fold increase in energy.

Measuring Earthquake Size

• Earthquake energy release can be calculated.
 – Energy of Hiroshima bomb is ~ 6.0 magnitude quake
 – Annual energy released by all quakes is ~ 8.9 magnitude.

• Small earthquakes are frequent.
 – ~100,000 earthquakes (of >3 magnitude) per year.

• Large earthquakes are rare.
 – There are ~ 32 earthquakes of >7 magnitude per year.

Earthquake Occurrence

• Earthquakes are closely linked to plate tectonic boundaries.
• Shallow earthquakes - Divergent and transform boundaries.
• Intermediate & deep earthquakes – Convergent boundaries.
Convergent Plate Boundaries

- Populous nations in convergent tectonic settings have to content with frequent earthquakes.
- 80% of all earthquakes occur in the circum-Pacific belt (around Pacific Ocean).

Another 15% occur in Mediterranean-Asiatic belt (Mediterranean to Himalayas to Indonesia)

Earthquake Focal Depths

- Shallow – 0-20 km depth
 - Along the mid-ocean ridge.
 - Transform boundaries.
 - Shallow part of trenches.
 - Continental crust.
- Intermediate and deep earthquakes occur along the path of a subducting plate called the Benioff-Wadati zone
 - Intermediate – 20-300 km depth as downgoing plate remains brittle.
 - Deep - 300-670km depth - Mineral transformations?
- Earthquakes rare below 670 km because the mantle is ductile

Continental Earthquakes

- Earthquakes in continental crust.
 - Continental transform faults (San Andreas, Anatolian).
 - Continental rifts (Basin and Range, East African rift).
 - Collision zones (Himalayas, Alps).
 - Intraplate settings (Ancient crustal weaknesses).

San Andreas Fault

- Pacific plate meets the North American plate on the western edge of California.
 - Very dangerous fault.
 - Hundreds of earthquakes each year.
 - 12 + major temblors since 1800.

Intraplate Earthquakes

- 5% of earthquakes are not associated with plate boundaries.
- These intraplate earthquakes are not well understood.
 - Possible causes.
 - Remnant crustal weakness.
 - Failed rifts.
 - Shear zones.
 - Stress transmitted inboard.
 - Isostatic adjustments.
- Clusters
 - New Madrid, Missouri.
 - Charleston, South Carolina
 - Montreal, P.Q.
 - Adirondacks, New York.

Earthquake Damage

- Earthquakes kill people and destroy cities.
- The death and damage resulting from a large earthquake can be horrific and heart-rending.
- Learning about the characteristics of earthquakes, what they do and how they do it, can improve your chances of surviving one of these potentially deadly events.
Ground Shaking and Displacement
- Earthquake waves arrive in a distinct sequence.
- Different waves cause different motion.

P waves
- 1st to arrive.
- Rapid up–down motion.

S waves
- 2nd to arrive.
- Back and forth motion.
- Stronger than P-wave motion.

L waves
- Follow S-waves
- Ground writhes like a snake.

R waves
- Last to arrive.
- Like ripples in a pond.
- May last longer than others.

Severity of shaking and damage depends on...
- Magnitude (energy) of the earthquake. More energy = more shaking & damage.
- Distance from the hypocenter.
- Intensity and duration of the vibrations.
- The nature of subsurface material.
 - Bedrock transmits waves quickly = less damage
 - Sediments bounce waves = amplified damage
 - Wave frequency and resonance

Shaking Effects on Buildings.
- Slabs disconnect.
- Masonry disintegrates.
- Buildings collide.
- Slopes collapse.
- Bridges topple.
- Bridges come apart.
Earthquake Damage

- Landslides and Avalanches
 - Shaking can destabilize slopes to the point of failure.
 - Often hazardous slopes bear evidence of ancient slope failures
 - Evidence that is not recognized.
 - In mountainous landscapes, earthquakes can bring down rockslides or snow avalanches.
 - An earthquake was the immediate precursor to the landslide that unleashed the Mount St. Helens eruption, May 18th, 1980.

Liquefaction

- Water saturated sediments become liquefied when shaken.
 - High fluid pore pressures force grains apart.
 - This reduces friction and they move as a slurry.
 - Sand becomes "quicksand."
 - Clay will become "quickclay."
 - Liquefied sediments flow.
 - Injected as sand dikes.
 - Erupt as sand volcanoes.
 - Preserve distorted layering.

Earthquake Damage

- Fire
 - Shaking topples stoves, candles and power lines.
 - Broken gas mains and petroleum storage tanks can ignite a conflagration.
 - Earthquakes destroy infrastructure such as water, sewer, telephone, and electrical lines as well as roads.
 - Firefighters often can’t help.
 - No road access
 - No water
 - Too many hotspots
 - Good planning is crucial.

Earthquake Damage

- Disease
 - Earthquake devastation may fuel large disease outbreaks.
 - Food, water and medicines are scarce.
 - Basic sanitation capabilities disabled.
 - Hospitals damaged or destroyed.
 - Health professionals overtaxed.
 - There may be many decaying corpses.

Tsunami or Seismic Sea Waves

- Often incorrectly called "tidal waves."
- Caused when earthquakes change the seafloor.
- Thrust faulting raises the seabed; normal faulting drops it.
- This displaces all the overlying water (up or down).
- Resulting in a giant mound (or trough) on the sea surface.
- This feature may be enormous (up to a 10,000 mi² area).
- The surface feature quickly collapses, creating waves that race rapidly away from the disturbance.
Earthquake Damage
• Destructive tsunamis occur frequently - about once/yr.
• There have been many tsunami disasters in recorded history.
 – 94 destructive tsunamis in the last 100 years.
 – 51,000 victims (not including Sumatra in 12/26/04)
• Many tsunami disasters lurk in the future of humanity.
 – Larger human population than at any time.
 – Concentrations of people in low-lying coastal areas.
• Education about tsunamis can save many lives.

Tsunami vs. Wind Waves
• Wind waves
 – Influence the upper ~100 m.
 – Have wavelengths of several 10s to 100s of meters.
 – Wave height and wavelength related to windspeed.
 – Wave velocity maximum several 10s of kph.
 – Waves break in shallow water and expend all stored energy.
• Tsunami waves
 – Influence the entire water depth (avg. 2½ miles).
 – Have wavelengths of several 10s to 100s of kilometers.
 – Wave height and wavelength unaffected by windspeed.
 – Wave velocity maximum several 100s of kph.
 – Waves come ashore as a raised plateau of water that pours onto the land.

Tsunami Behavior
• Tsunamis race at jetliner speed across the deep ocean.
• Tsunami waves may be imperceptible in the deep ocean.
 – Low wave height (amplitude).
 – Long wavelength (frequency).
• As water shallows…
 – Waves slow from frictional drag.
 – Waves grow in height.
 • Waves may reach 10-15 m.

The Aftermath
• Tsunami destruction limited to low-lying coastal land.
• The magnitude of the run-up is a result of...
 • Offshore bathymetry.
 – Broad shallows
 • Shallows sap wave energy.
 • Waves become higher, but...
 • Have less energy and dissipate sooner.
 – Rapid deep to shallow offshore.
 • Waves have maximal energy.
 • Wave heights are modest.
 • Water pours onto land as a sheet.
 • Deadliest condition.
• Topography of shore.
 – Broad low land – maximum damage.
 – Steep rise of land – less damage.

The Destructive Effects of Earthquakes

© Tsunami: Killer Waves a magnitude 9.0 earthquake offshore Sumatra caused deadliest tsunami in history.
Dec. 26, 2004

The Aftermath
Dec. 26, 2004

Banda Ache, Sumatra
The Indian Ocean Tsunami

- On December 26, 2004, a strong megathrust earthquake (Mw 9.0) originated in the oceanic trench to the west of northern Sumatra.
- The earthquake was the largest in 40 years.
- A rupture length of 1100 km and a rupture width of 100 km were estimated from aftershocks.
- Fault displacement was as much as 15 m.
- The earthquake generated a devastating tsunami that killed people in 10 countries surrounding the Indian Ocean.

The Indian Ocean Tsunami

- Killed more people than any tsunami in recorded history.
 - ~283,100 deaths with 14,100 still missing (as of 5/05)
 - 1,126,900 people were displaced.
- The death toll was so horrific for several reasons.
 - The earthquake was so large.
 - Low-lying coastal areas were heavily populated
 - Resorts on the Malaysian Peninsula were full of Christmas tourists.
 - The tsunami destroyed low-lying coastal areas around the Ocean.
 - Northern Sumatra was particularly hard hit. Large portions of Banda Aceh were erased from the map.

The Indian Ocean Tsunami

- Western Sumatra is a typical subduction setting.
 - Deep oceanic trench.
 - East dipping subduction zone.
 - Oceanic volcanic island arc.
- The Indian Plate is subducting at an oblique angle (N23E) beneath the Burma Microplate.
- This results in a complicated geometry that includes...
 - Strike-slip (transform) faults
 - Thrust faults

The Indian Ocean Tsunami

- Destruction limited to land below the “run-up” elevation.
- Dense coastal development suffered the greatest devastation.
- In Banda Aceh, the tsunami erased entire communities.
Surviving a Tsunami

- Heed natural and official warnings.
 - An earthquake in a coastal setting.
 - Retreat of water from the shoreline is sign of an impending tsunami.
- Expect many waves.
 - Bigger waves may be next.
 - Wave arrival may last for hours.
- Abandon belongings.
- Get to high ground and stay there.
- Climb a sturdy building or a tree.
- Grab something that floats.
- Expect debris.
 - Sediment
 - Wreckage
 - Corpses
- Expect landscape changes.

Source: Brian F. Atwater and others, 1999, Surviving a Tsunami – Lessons from Chile, Hawaii and Japan, USGS Circular 1187

U.S. Coastal Risk

- Coastal Oregon and Washington
 - Cascadia subduction zone.
 - Geological evidence of numerous tsunami events.
- Hawaii - Kilauea volcano
- East Coast of the United States
 - Cumbre Vieja volcano on La Palma (Canary Islands).
 - Volcano has a gigantic fracture system.
 - At some point in the future, eruption will cause this fracture to fail.
 - 500 km3 of rock will enter the ocean.
 - The ensuing tsunami may devastate the entire U.S. East Coast.

Source: Brian F. Atwater and others, 1999, Surviving a Tsunami – Lessons from Chile, Hawaii and Japan, USGS Circular 1187

Tsunami Prediction

- Scientific modeling helps to predict tsunami behavior.
- Detection systems exist in the Pacific; are planned for Indian Ocean.
 - Tsunami detectors are placed on the deep seafloor.
 - Sense increases in pressure from subtle changes in sea thickness.
- Prediction / detection can save 1000s of lives.

Earthquake Prediction

- Prediction would help reduce catastrophic losses.
- Can seismologists predict earthquakes? Yes and no.
 - CAN be predicted on a long-term (10-100s of years) basis.
 - CANNOT be predicted in the short-term (hours-months).
- Data analysis for prediction is “seismic hazard assessment.”
 - Seismic hazards are shown on maps of seismic risk.
 - This information is useful for...
 - Developing building codes.
 - Land-use planning.
 - Disaster planning.

Earthquake Prediction

- Long-Term Predictions
 - Probability of a certain magnitude earthquake occurring on a time scale of 30 to 100 years, or more.
 - Based on the premise that earthquakes are repetitive.
 - Require determination of seismic zones, by...
 - Mapping historical epicenters (after ~ 1950).
 - Evidence of ancient earthquakes (before seismographs).
 - Evidence of seismicity – Fault scarps, sand volcanoes, etc.
 - Historical records.

- Seismic gaps, places that haven’t slipped recently, are likely candidates.
Earthquake Prediction

- **Short-Term Predictions**
 - Goal: warn of the location & magnitude of large earthquakes
 - Currently, no reliable short-range predictions are possible.
 - But known precursors to earthquakes, including…
 - Clustered foreshocks.
 - Crustal strain.
 - Stress triggering.
 - And, possibly…
 - Water level changes in wells.
 - Increases gases (Rn, He) in wells.
 - Unusual animal behavior.
 - On May 18th, 2005, the USGS began daily 24-hour earthquake hazard assessments for California.

Preparing for Earthquakes

- Can’t stop earthquakes but we can be ready.
 - Understand what happens during an earthquake.
 - Map active faults & areas likely to liquefy during shaking.
 - Developing construction codes to reduce building failures.
 - Land-use regulation to control development.
 - Community earthquake preparedness training.
 - Education on safe earthquake behavior and response.
 - Keep viable stores of emergency supplies.

Notable Earthquakes

<table>
<thead>
<tr>
<th>Location</th>
<th>Magnitude</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobe, Japan</td>
<td>7.9</td>
<td>Mar 11, 1995</td>
<td>Largest in Japan, huge landslides</td>
</tr>
<tr>
<td>Niigata, Japan</td>
<td>7.3</td>
<td>Aug 17, 1999</td>
<td>120,000 buildings destroyed, 17,829 deaths</td>
</tr>
<tr>
<td>Kobe, Japan</td>
<td>6.9</td>
<td>Jan 17, 1994</td>
<td>120,000 buildings, $147 billion</td>
</tr>
<tr>
<td>Nisqually, Wa, USA</td>
<td>6.8</td>
<td>Mar 28, 2001</td>
<td>100,000 buildings, 515 lives</td>
</tr>
<tr>
<td>Kobe, Japan</td>
<td>7.3</td>
<td>Oct 17, 1995</td>
<td>'Wold Series'</td>
</tr>
<tr>
<td>Kobe, Japan</td>
<td>7.9</td>
<td>Jul 21, 1975</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>7.8</td>
<td>May 31, 1972</td>
<td>Large landslide</td>
</tr>
<tr>
<td>Prince William Sound, Al, USA</td>
<td>8.3</td>
<td>Mar 26, 1964</td>
<td>"Good Friday" - Tsunami</td>
</tr>
<tr>
<td>Messina, Italy</td>
<td>7.5</td>
<td>Dec 28, 1968</td>
<td>120,000 buildings</td>
</tr>
<tr>
<td>Hartford, CT, USA</td>
<td>7.3</td>
<td>Aug 18, 1969</td>
<td>Fall in Boston, Chicago and St. Louis, 91</td>
</tr>
<tr>
<td>Christchurch, NZ, New Zealand</td>
<td>7.5</td>
<td>Aug 19, 1969</td>
<td></td>
</tr>
<tr>
<td>New Madrid, Mex, MX</td>
<td>7.5</td>
<td>Dec 16, 1985</td>
<td>Fall in Mexico, Changed Mex, 5, 900 lives</td>
</tr>
<tr>
<td>Great Alaskan</td>
<td>7.1</td>
<td>Nov 3, 1964</td>
<td>Fall in Alaska, 9, 300 lives</td>
</tr>
<tr>
<td>Christchurch, NZ, New Zealand</td>
<td>7.1</td>
<td>Mar 23, 1990</td>
<td></td>
</tr>
<tr>
<td>Kobe, Japan</td>
<td>7.9</td>
<td>Mar 11, 1995</td>
<td>Largest in Japan, huge landslides</td>
</tr>
</tbody>
</table>

The End