New Mexico School District
Professional Development Plans
Summary Report

Prepared for:
New Mexico Partnership for Mathematics and Science Education
Regional Educational Technology Assistance Program
Linking Leaders

April, 2000

Authors:
Kirk F. Minnick and Kristen E. Wenzel

Minnick & Associates, Inc.
2403 San Mateo NE, Suite P-4 Albuquerque, New Mexico 87110
505-889-9358 Fax: 505-889-9374

This document is supported by federal funds from the National Science Foundation (NSF), Office of Educational Systemic Reform, contract number 9554468. Its contents do not necessarily reflect the views or policies of NSF, and no official endorsement of material should be inferred.
Acknowledgments

Minnick & Associates, Inc. would like to thank the New Mexico State Department of Education for their support in obtaining access and working space during the collection of these data. Special thanks to Steven Sanchez, Jean Podborny, Nancy Mandel, Paula McGee and others of the Curriculum, Instruction & Technology unit of the department. We also would like to thank the NM SDE for providing access to achievement level data for the schools districts, thereby allowing an analysis of student proficiency with respect to district goals.

We also want to thank those school districts who were able to respond to a last minute request and provide an electronic copy of their plan which made compilation that much easier. All the school districts have put in many hours of work and meeting with staff to put forth a District Professional Development Plan in response to Senate Bill 110.
Introduction

The following report contains the summary and assessment of the NM District Professional Development Plans submitted to the State Department of Education in March, 2000 in compliance with Senate Bill 110 and Section 22-2.2.AA. Senate Bill 110: 1999 states that the State Board develop a systemic framework for professional development that provides training to ensure quality teachers and principals and that improves and enhances student achievement. The state board shall work with public school educators, the commission on higher education and institutions of higher education to establish the framework. The framework shall include:

1. the criteria for school districts to apply for professional development funds, including an evaluation component that will be used by the department of education in approving local school district professional development plans; and

2. guidelines for developing extensive professional development activities for school districts, including teaching strategies, curriculum materials, distance learning networks and web sites to ensure that the state board's rules pertaining to content standards and benchmarks are used by New Mexico teachers.

Some of the plans are still being reviewed by the Department and others are being revised by the districts. Eight districts are still in the process of writing their plans and are not included in this analysis. This report will cover the professional development plans submitted by 77 (86%) of the districts that were available for review. The report will not identify the contents of individual district plans but will attempt to provide a summary of the professional development needs expressed by the 77 districts included in the analysis.

As stated in the materials provided to districts from the NM SDE, “the primary purpose of professional development is school improvement as measured by the success of every student”. The department provided a framework for the plans (see Appendix A). This framework was structured around the Educational Plan for Student Success (EPSS) goals of the district and consisted of 15 components for the district to respond to each EPSS goal. This report is intended to support the professional development community in their work with districts.
Methodology

The analysis of 77 professional development plans from districts of different sizes, representing different school populations and communities, required a specific methodology to condense data to a meaningful and comparable format. The State Department of Education provided all the districts with a sample reporting matrix encompassing the 15 components of each EPSS goal, however, the districts were not required to utilize this matrix in their plans. As a result, the plans were submitted in a variety of styles, with different types of information and detail.

The first step in the process was to examine the plans on file at the State Department of Education and determine the plan components best suited to provide a summary of professional development issues. Upon reviewing the plans submitted to the SDE in early March, a summary matrix was created to utilize in collecting data from the district plans (see Appendix B). From the larger and more detailed district plans, data on five components were collected:

1. **EPSS Goals**: The specific EPSS goals for each District.
2. **PDP Addressed**: The type of Professional Development addressed by the EPSS goal.
3. **ACTIVITIES/STRATEGIES/FOLLOW-UP ACTIVITIES**: Three separate components were condensed into one category due to overlap in meaning and interpretation.
4. **RESOURCES AVAILABLE/SOURCES OF FUNDS**: These two components were collapsed to encompass the resources of a District for each specific EPSS goal.
5. **RESOURCES NEEDED**: This component was included to identify the needs of districts in relation to each goal.

The SDE had sent out a request towards the end of the process for computer discs of District plans, which 54 of the 77 districts provided. The SDE allowed access to these discs, which facilitated the data collection through direct cut and paste of plan components into the summary matrix. For the remainder of districts, hardcopies of the reports were utilized to collect the necessary data for the summary matrix.

It is important to bear in mind that the following report is based on summaries of the District Plans. The summary matrices do not contain the level of detail present in the official plans submitted to the SDE. Due to time and budget constraints, it was necessary to condense the large amount of information provided in many plans into a manageable format for analysis. Also, while many plans provided detailed information on professional development plans at the school and individual level, only district level data were recorded in the summary matrices (except when plans only contained school level data, which was entered as district data).

After the District Professional Development Plans were condensed into the summary matrix, the data was entered into a database file to allow for more efficient analysis. The SPSS Standard Version 8.0.2 statistical program was utilized to analyze the data and provide summaries of the PD plan components. In addition, the database was linked to a database of New Mexico Terra Nova Test results for additional analysis.
Summary of District Goals

Educational Plans for Student Success Goals

The EPSS goals for each district were compiled to produce a summary of all the EPSS goals for the 77 District Plans submitted. There were a total of 240 goals for the 77 districts. As can be seen in Figure 1, there are a large number of unique goals (N=36) identified by the districts in their Professional Development Plans. The goals range from topics related to traditional educational issues (Student Achievement, Curriculum Alignment) to more holistic issues such as Community Involvement and Ethical Behavior. Thirty-one districts identified Technology as a goal, which may reflect the greater need of schools to update their available technology resources and the increased emphasis on such skills in the modern world. Student Achievement in the four core areas of language arts, math, science, and social studies was identified as an EPSS goal by 23 districts, indicating a need to improve the overall education of students.

A number of districts identified specific subject areas as EPSS Goals. The number of districts that identified Language Arts as a focus area was 18, while other districts specified specific aspects of Language Arts. A total of 21 districts specified Reading goals, while 12 districts identified Literacy and 12 Writing goals. A total of 18 districts identified Math as an EPSS goal, while 4 districts identified Math and Science as an EPSS goal. Five districts identified Science as an EPSS goal. Several districts focused on different electives as goals.

In addition, districts identified goals related to curriculum development and alignment in all areas, as well as goals related to teacher’s practices. Districts also addressed concerns about issues such as school safety, student well-being and development, cultural awareness, drop-out rates, and community involvement through their EPSS goals. The variety of the EPSS goals reflect the unique needs of the diverse districts throughout the state. While many of these goals are shared, reflecting common statewide needs in professional development, the less common goals indicate areas of special need in districts.
Figure 1
EPSS Goals Identified by Districts in Professional Development Plans

Number of Districts

- Technology: 31
- Achievement in Core Areas (Math, Language Arts, Social Studies, Science): 23
- Reading: 21
- Math: 18
- Language Arts: 18
- Student Health/Well-being: 13
- Writing: 12
- Literacy: 12
- Safe Learning Environment: 11
- Community Involvement: 8
- Ethical Behavior: 8
- Student Communication Skills: 6
- Drop Out Reduction: 6
- Science: 5
- Math & Science: 4
- Career Preparation: 4
- Student’s Individual Goals: 3
- Align Curriculum w/Standards: 3
- Bilingual Education for All: 3
- Student Attendance: 3
- Critical Thinking Skills: 3
- Art: 2
- Listening: 2
- Cultural Awareness: 2
- Library/Media Services: 2
- Vocational Ed: 2
- Special Ed: 2
- Alternative Education: 2
- Teacher Practices: 2
- Challenging Curriculum: 2
- Physical Ed: 2
- At-Risk Students: 1
- Assessment & Reporting: 1
- Organizational Support: 1
- Social Studies: 1
- Music: 1

N = 77
Many of the goals identified by the districts overlap and can be collapsed into more generalized categories. This provides a better picture of the general focus areas shared by the districts. Therefore, the 36 goals identified by the districts were grouped into 11 generalized topic areas. Figure 2 displays the number of districts with goals in these new categories. When language arts, reading, writing, literacy and listening are grouped together into Humanities, 86% of districts have goals in this area. This suggests that districts across the state are primarily focusing on issues related to student skills in oral and written communication and comprehension. Thirty-seven districts identified goals related to Student Health and Behavior, suggesting a concern with student overall well-being and its relationship to academic performance. A number of districts (23), identified goals related to General Student Achievement Issues and 13 districts specified goals related to Curriculum Reform.

Figure 2

Frequency Distribution of Districts with EPSS Goals in Generalized Subject Areas.

Math and Science Goals
As the remainder of this report will be primarily focused on math, science and technology professional development needs, it is useful to examine a summary of the districts that identified math and science as focus areas in their EPSS goals. While some districts did identify math or science as a specific focus area, they also grouped the two subjects or subsumed them in a goal addressing overall student achievement in core subject areas, which includes math and science.

Almost a quarter (23%) of the districts identified Math as a specific EPSS goal, indicating a statewide need in this specific subject area (Figure 3). In addition, four districts (5%) identified Math and Science as a combined EPSS goal. Twenty-three districts (30%) specified Student Achievement in Core Areas as a goal. Thus, over half (58%) of the districts included EPSS goals related to Math in their Professional Development Plans.
Only 6% of the districts included Science as a separate EPSS goal (Figure 4). When this is combined with the districts identifying Math and Science and Core Area Achievement, the overall percentage of districts including an EPSS goal related to Science is 41%. This is substantially less than the number of districts reporting Math as an EPSS goal.
Math, Science, and Technology Goals

The following section will provide a summary of the strategies, as well as available and needed resources for math, science, and technology goals.

Math Goals

A total of 45 districts identified an EPSS goal focused on or including Math. Within this goal, the districts identified specific strategies and activities, as well as the available resources to be utilized and the resources needed. Many of the strategies/activities identified by districts were very specific and difficult to compare across districts. Thus, a series of generalized categories were created to classify district strategies/activities. Due to the fact that the Core Area goal can contain strategies related to other subjects, caution should be used in interpretation. Figure 5 presents the categories in relation to math as a focus area (Math, Math and Science, and Core Area). The most common strategy for districts are activities related to improving Instructional Strategies (N=30). Strategies focused on Standards-Based Curriculum Development and Alignment were also common (N=22), indicating the importance of Standards-Based curriculum in enhancing student achievement. Surprisingly, only 12 strategies or activities were related to improving teachers’ Content Skills, with a greater number of strategies (N=19) focusing on the use of Published Curriculums.

Figure 5
Strategies Identified by Districts for Math EPSS Goals
Assessment activities in Math include Assessment Techniques and CTBS Workshops for Teachers. Strategies classified as **Content Skills** included Logical Reasoning and Everyday Facts Training, and Teaching Problem Solving Strategies to Students. **Data Use and Management Strategies** include Training in Analysis of CTBS Test Results, and the Use of Assessment and Classroom Data. **Instructional Strategies** include workshops on Computerized Math Instruction, Standards-Based and Project Based Training, and Calculus and Applied Math Courses. A variety of **Published Curriculums** are cited as strategies, including Josten’s Computer Lab, Saxon Math Program, and Opening Eyes to Math. Many of these programs are computer-based and/or use manipulatives in instruction. **Leadership Skills** strategies include activities such as Professional Coaching, Trainer of Trainers workshops, and EPSS Team Planning. **Standards Based Curriculum Development and Alignment** strategies include alignment activities, as well as Curriculum Revision and Developing District Curriculums. **Technological Literacy** refers to strategies focused on developing teachers’ and staff’s ability to utilize computers, distance learning and other technological resources.

Resources Available

Figure 6 displays the most common resources available to districts identifying Math as an EPSS goal. Districts often identified multiple resources for each EPSS goal. Operational (N=29) and Title II (N=23) funds are the most commonly identified resources. In addition, Title I (N=13) and Title VI (N=10) are common. IDEA funds (N=13) are also providing a source for activities related to math. In addition, 10 districts identify available resources from ENMERC and SNMERC, while 7 districts identify RCCs and RECs as resources. A number of districts (11) identified Institutes of Higher Education and Junior/Community Colleges as providing resources such as continuing education courses and workshop instructors. It is interesting to note that only 2 districts identified Eisenhower Funds as an available resource, despite the potential for such funds to be used in activities related to math achievement. Districts also identified staff time (N=14) and materials (N=9) as resources.

Figure 6

Available Resources and Funds for Math Goals

*CSPD, Tech Funds
**UCAN, Northern Network, ENMERC/SNMERCS
Resources Needed
Districts did not provide a great deal of information on the needed resources for Math activities. In many cases, the districts identified the available resources as providing for all of their stated goals. Twenty-seven districts specify the need for additional funding, while 19 districts indicate a need for experts to provide training and 19 require professional materials, such as curriculum guides and books. Specific examples of resources include updated Accelerated Math Programs, Travel/Transportation, Consultants to Link EPSS to Curriculum and Manipulatives.

Science Goals
Thirty-seven districts included Science in their EPSS goals. The same generalized categories were used to facilitate comparison of strategies. Figure 7 provides the strategies identified for all EPSS Goals including Science as a focus area (Science, Math and Science, and Core Areas). The strategies are similar to Math, with the greatest number of activities related to Instructional Strategies (N=20), Standards Based Curriculum Development and Alignment (N=14) and the use of Published Curriculum (12). Ten Strategies emphasized Content Skills, while 13 strategies emphasized the need for staff development activities.

The types of activities related to Assessments include Alternative Assessment and the creation of a local assessment. Cognitive Processes includes such strategies as Learning Styles Workshops and Multiple Intelligence Training. The science strategies described by the Content Skills category include teaching scientific vocabulary to students and the use and study of supplementary materials in science. Instructional Strategies included training in Chemical and Lab Safety, Inclusion Workshops, Place Based Education Training, and RCC6 Science Kits and Training.

Figure 7
Strategies Identified by Districts for Science EPSS Goals
Resources Available
The resources available for science activities also parallel that of math activities, as can be seen in Figure 8. The most predominant source of funds is operational (24 districts), with Title I (N=12), Title II (N=15), and IDEA (N=14) funds also common. Resources from IHEs (N=8), RCC/RECs (N=5) and ENMERC/SNMERC (N=8) are also utilized for strategies related to Science goals. Districts also identified staff time (N=10) and materials (N=6) as resources.

Resources Needed
The resources needed for activities related to science are not provided in detail by the districts. Eighteen districts indicate a need for more funding and 16 describe the need for materials, such as books, science kits, and professional literature. The additional resources needed for activities range from software and hardware, to staff time and stipends. Specific examples of needed resources are Grant Writing Training, Resource Lists, and Parental/Community Involvement.

Technology Goals
The strategies described for the 31 districts with Technology EPSS goals are much more specific, due to the specialized skills encompassed in this category. Once again, the strategies were classified into generalized categories to facilitate the analysis. Figure 9 presents the summarized strategies for the districts with Technology EPSS goals. Technological Literacy was by far the most common strategy (N=20). Activities addressing Instructional Strategies (N=12) and using Published Curriculum (N=8) were also common.
Technological Literacy encompassed activities such as CD and Software training, Computer Courses for Teachers, Computer Literacy Training, and use of Internet. Instructional Strategies included workshops on Integrating Technology in the Classroom, Scholastic Network Training, and SPED Training. Published Curriculum identified as a strategy included the Math Star Program, and CORD Curriculum.

Sources of funding for Technology goals are less likely to come from Federal Title programs. Instead, a number of districts (N=14) identify Technology funding sources, such as Technological Literacy Challenge Funds (TLCF) and other similar grants (Figure 10). The most common resources were Operational Funds (N=16) and Institutes of Higher Education, which 12 districts cited as providing training, facilities, and partnerships. Seven districts identified Gear-Up as a resource. Eight districts singled out the UCAN Rural Systemic Initiative as an available resource, while 13 districts identified various regional groups, such as RCCs, Northern Network, and ENMERC/SNMERC. A variety of different sources were cited by a smaller number of districts, including IDEA, Medicaid, School to Work, RETA, Bilingual, and Perkins.
The resources needed for activities associated with Technology goals are primarily related to the costs of technological materials and need for training. Twenty-one districts need additional funding for their technology activities, while 23 districts need software, hardware and additional materials. Six districts require outside experts to assist in training, 5 need facilities for training and 9 districts specified staff release time. Specific examples of resources include computer upgrades, digital access in classrooms, laser disks, scanners and LCD panels.

Summary
Reviewing the goals of math, science, and technology, it is apparent that there are areas of common ground, as well as some noteworthy differences in the strategies/activities, available and needed resources. It is appropriate at this juncture to provide a discussion of these issues, prior to the analysis and comparison of test results.

One of the most striking differences is in the small number of districts identifying science as a focus area in their EPSS goals. Approximately 6% (N=5) of the 77 districts identified Science as a specific focus area in their EPSS goals. In contrast, almost one-quarter (N=18) of the districts identified Math as a single focus area and over one-third (N=31) had Technology as a focus area. This disparity is surprising, particularly for math and science, given the overlap of the two disciplines (4 districts grouped the two subjects together) and the similarity of many strategies and activities identified for each goal.
Figure 11 presents the most common strategies for the goals of Math, Science and Technology. Math and Science have the same top five strategies (Instructional Strategies, Standards Based Curriculum, Published Curriculum, Staff Development, and Content Skills) reflecting common needs in these two subjects. While Technology strategies also place an emphasis on Instructional Strategies, Standards Based Curriculum and Published Curriculum, the greatest number of strategies (55%) are focused on Technological Literacy.
Given that the strategies for math and science are alike, it is not surprising that the funding sources are extremely similar (see Figures 6 and 8), with the most common sources of funds Operational and Title I. In contrast, Technology resources primarily come from specific Technology funds and Operational accounts, which is most likely a function of the restrictions placed on various funds for their use.

It is somewhat unusual that such a large gap exists in the number of districts with math goals versus those with science. If funding sources and strategies are similar for math and science, then it seems reasonable that districts could address both subject areas, maximizing time, energy and resources. One explanation would be that math represents a greater area of need in terms of student performance, thus the higher number of districts focusing on the subject. The next chapter addresses possible explanations for differences through analysis of Terra Nova results.

The resources needed identified for the three goals were similar, with an emphasis on additional funding and materials. Staff time, substitutes, and stipends were common needs across the three goals. Naturally, technology goals required more specific resources in terms of computer materials, such as hardware, software, scanners, and internet access in classrooms. However, many math and science strategies required specific published software programs for implementation, as well as training for teachers in their applications and integration into instructional practice. In general, districts did not provide a significant amount of detail regarding specific needs in professional development, a trend that was present across all the EPSS goals identified.
Linking District Professional Development Plans & Terra Nova

The District Professional Development Plans are based on district EPSS goals which are a product of a comprehensive process of school and community examination of needs. One component of the guide to formulating EPSS goals is an examination of student attainment. This section examines the relationship between student achievement results on one assessment, the Terra Nova New Mexico Supplement, with the District Professional Development Plans. The reader is cautioned that there are many factors examined by the district and community in formulating their EPSS goals. Student achievement is only one aspect of the educational system to be considered in developing district plans.

The NM Terra Nova was administered to students in the 4th, 6th and 8th grades during the 1998-99 school year. “This criterion-reference assessment reports a student’s standing relative to the New Mexico’s Standards for Excellence. There are four performance levels for New Mexico students: Beginning Step, Nearing Proficiency, Proficient, and Advanced. These levels constitute a set of performance standards that have been established by a panel of teachers and educators representing a number of school systems in the state.” (Guide to Test Interpretation, Spring 1999; NM Achievement Assessment Program). Proficiency levels are provided in each of the following areas: Math, Science, Language, and Social Studies.

The assessment results for the 77 school districts were examined to determine the number of districts where 25% or fewer students were judged Proficient or Advanced in each of the four content areas assessed. Figure 12 presents these results for the 77 districts.

![Figure 12](image-url)

Number of Districts with 25% or Fewer Students Proficient or Advanced in Each Content Area as Measured by the New Mexico Terra Nova 1998-99

- Social Studies: 2
- Science: 35
- Language Arts: 9
- Mathematics: 42

Number of Districts
PD Plans & Mathematics Proficiency

Forty-two (55%) of the 77 districts with professional development plans had 25% or fewer of the their assessed students Proficient or Advanced in the area of Mathematics. Figure 13 presents the percentage of these districts by focal area in math or math encompassing goal.

Figure 13
EPSS Focus Area of Forty-Two Districts with Low Percentage of Students Proficient or Advanced in Mathematics on Terra Nova in 1998-99

When these 42 districts are examined separately we find that almost one-fourth(24%) have an EPSS focus area specifically in Math, an additional 2% have a Math & Science focus, and 29% have a goal of Increased Student Achievement in All Core Areas. However, 45% of these low mathematics performing districts do not explicitly target Mathematics in their EPSS goals and subsequent Professional Development Plans at the district level. They are two-thirds more likely to focus on Humanities (Reading, Writing, Language Arts and Literacy) than districts with a math focus.

The Standards Performance Index (SPI) mean scores were used to take a closer look at the districts with 25% or fewer of students proficient in Math or Science. The SPI is an index that estimates the number of test items a student could be expected to answer correctly had 100 such items been taken. The mean scores for the six math SPIs were compared across the three tested grades (4th, 6th and 8th) and between the districts that had 25% or fewer students proficient or advanced and statewide. The six SPIs are Problem Solving and Reasoning, Communications and Connections, Numbers and Operations, Geometry and Measurement, Statistics and Probability, and Functions and Algebra.

Mean SPI scores decline from 4th grade to 6th grade, both in the low performing districts and statewide. With the exception of Communication and Connections and Statistics and Probability, this decline continues from 6th grade to 8th grade. As might be expected, the mean SPIs for the low performing districts are lower than the statewide scores, generally by about 10%. However, the strengths and weaknesses remain consistent between the low performing districts and statewide. 4th and 6th graders are strongest in Numbers and Operations and 8th graders are strongest in Statistics and Probability. Statistics and Probability is the weakest area for 6th graders. Functions and Algebra is the weakest among 4th graders, and is low in all grades. 8th
graders are particularly weak in *Geometry and Measurement*, with scores more than 20% lower than the next lowest score (*Functions and Algebra*).

PD Plans & Science Proficiency
Thirty-five (45%) of the 77 districts with professional development plans had 25% or fewer of their assessed students Proficient or Advanced in the area of Science. Figure 14 presents the percentage of these districts by focal area in science or science encompassing goal.

![Figure 14](image)

EPSS Focus Area of 35 Districts with Low Percentage of Students Proficient or Advanced in Science on Terra Nova in 1998-99

When these 35 districts are examined separately we find that only 3% have an EPSS focus area specifically in Science, an additional 6% have a Math & Science focus, and 26% have a goal of Increased Student Achievement in All Core Areas. However, almost two-thirds (65%) of these low science performing districts do not explicitly target Science in their EPSS goals and subsequent Professional Development Plans at the district level. They are four times more likely to focus on Humanities (Reading, Writing, Language Arts and Literacy) than districts with a Science focus.

The seven science SPIs are *Taxonomies of the Physical World, Science as Inquiry, Physical Science, Life Science, Earth and Space Science, Technology and History, and Science in Personal, Social and Environmental Perspectives*. In comparison to math, science mean SPIs did show a decrease in all seven indicators between 4th and 6th grade. Some mean SPI scores increase between grades and some decrease, with neither a noticeable pattern or differences between the low performing districts and statewide.

Mean SPI scores in the low performing districts are generally about 15% lower than scores statewide. As in math, strengths and weaknesses are similar between low performing districts and statewide. *Life Science* is a strength across the grades, though somewhat less so in the 6th grade, where *Physical Science* has the highest score. Conversely, *Physical Science* is the weakest area among 4th and 8th graders. *Technology and History* is also weak in 4th and 6th grades, though a strength among 8th graders.
One of the goals of this summary report of District Professional Development Plans was to provide a “Big Picture” overview of professional development needs in the state, to identify those areas of common need, particularly in the areas of math, science, and technology. Based on these findings, a number of recommendations can be made to assist the SDE, the Districts, and the Professional Development Community in future endeavors.

Professional Development Planning Recommendations
In the review and summary of the district plans, it was evident that there was some confusion regarding the required components and purpose of the plan, as well as the format to utilize in reporting. As this was the first year of the process, it is not unusual to find this confusion. In addition, the staff and time available for districts to complete the plans most likely impacted the process.

The SDE, Districts and educational system may benefit from the implementation of an integrated computer based strategic planning tool. Professional development plans could be tied directly to EPSS and the data that supports district goals would be embedded. The advantage of providing districts with common software would allow simple data entry through selection from pre-determined lists, limited descriptive fields, and check boxes would be two-fold. First, districts would be able to reduce the amount of time and effort expended on plan preparation and develop more focused plans. Second, SDE would have all plans in a common, comparable format to facilitate the review and approval process. An additional benefit of a database system would be the opportunity to link together districts with common Professional Development needs, as many PD plans described strategies involving visiting districts with successful programs or partnering with districts for workshops and/or conferences. Software is already available to perform these functions and could be evaluated to determine its appropriateness for New Mexico schools.

Comments and Recommendations on EPSS Goals
In the initial analysis of plans, it was immediately evident that Science was not a popular focus area for Districts in comparison to other subjects such as Language Arts and Math. Out of 77 districts, only 5 had goals directed specifically towards science. The majority of districts had goals focused on Language Arts areas, such as reading, literacy, writing, and listening. A large number of districts recognized the importance of a student’s personal well-being and the provision of a safe and comfortable learning environment. The emphasis on goals directed towards these issues, as well as goals targeting greater parental and community involvement, will contribute to a stronger program of student success.

However, evidence from the New Mexico Terra Nova 1998-99 assessment does not directly support this preponderance of goals focused on Language Arts. Only 9 districts of the 77 had low percentages of assessed students Proficient or Advanced in the Language Arts. On the other hand, over half (N=42) of the districts had low percentages of students Proficient or Advanced in Math and 45% (N=35) in Science. On the basis of test data, Language Arts does not appear to be
an area of urgent need. It is not clear why districts chose to address such a large number of goals on the subject. Terra Nova data indicated that only 2 of the 77 districts had low percentages of Proficient or Advanced students in Social Studies, which most likely explains the presence of only one EPSS goal addressing this subject.

As presented earlier, almost half of the low performing mathematics districts did not have any goals targeting Math, whereas two-thirds (65%) of low performing districts in science did not have goals addressing science. A closer examination of Terra Nova results through the mean scores for the six Math SPIs and seven Science SPIs did not provide any evidence to support the lack of math and/or science goals in low performing districts. The mean SPIs in Math for low performing districts are 10% lower than statewide SPIs, and the mean Science SPIs are 15% lower. The SPIs provide an indication of what students are able to know and do in the four major content areas (Language Arts, Math, Science, Social Studies).

The presence of goals contradictory to Terra Nova Assessment results is not of concern, as much as the absence of certain goals. It is unusual that many districts are selecting goals not focused on areas of weakness in student performance. Senate Bill 110 directed districts to develop frameworks to “improve and enhance student achievement.” The many diverse goals addressed by the districts are all devoted to the ultimate goal of improving student success, however, the lack of goals targeting specific, known weak subject areas does not contribute towards this process.

Future plans need to have a stronger foundation in the application and integration of available data. Many districts did utilize data from alternative assessments and surveys to develop their professional development plans and needs, it is this kind of data based decision making that needs to become a formal part of the planning process. A number of districts also requested professional development in the area of data use and management, as well as strategic planning, acknowledging the need for skill in these areas. While certain EPSS goals may provide a comfort zone in terms of familiarity, the development of more challenging goals should not be a difficult process. In particular, districts should be aware of the opportunity to express their resource needs, whether in the form of funding, materials or actual training and guidance. The Professional Development Community will be better able to serve districts through well-articulated, data driven EPSS goals.

The resources needed aspect of activities was not addressed in detail by many districts, which was unfortunate, as it did not allow a detailed analysis of the types of resources needed to address different EPSS goals. While many districts reported that the strategies and activities identified did not require additional resources, it is not clear whether the districts were aware of the wide array of potential resources. The implementation of a computer based planning tool would assist district staff in the potential applications of the plans, particularly in providing assistance and resources for professional development within districts.
District Professional Development Plans

<table>
<thead>
<tr>
<th>EPSS FOCUS AREA</th>
<th>Content Standards and Benchmarks Addressed</th>
<th>PDP Goals Addressed</th>
<th>Teacher/Adm Competencies Addressed</th>
<th>Strategies Used by the Activity</th>
<th>Available Resources</th>
<th>Resources Needed</th>
<th>Effectiveness/Impact</th>
<th>How did the Activity Impact Students in the Classroom</th>
<th>Evaluation of the Activity Methods/Used - Review of the Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>District Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX A

Page 2 of SDE Matrix

<table>
<thead>
<tr>
<th>EPSS FOCUS AREA</th>
<th>On going Professional Development Follow Up Activities</th>
<th>Cost of Activity and Funding Sources w/amounts</th>
<th>Participants in PD Activity</th>
<th>Person/Persons Responsible for Implementation and follow-through of PD activities</th>
<th>Timeline for Activity & Ongoing Follow Through</th>
<th>CEU’s Credit Hours or Contact Hours given</th>
<th>Were Teachers/ Administrators/Staff members compensated for their time? explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>District Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Mexico School District P.D. Plans

<table>
<thead>
<tr>
<th>DISTRICT NAME:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRICT CODE:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPSS GOALS</th>
<th>PDP Addressed</th>
<th>Activity/Strategy and Follow-Up Activities</th>
<th>Resources Available/Sources of Funds</th>
<th>Resources Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>