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1. INTRODUCTION. The fundamental theorem of arithmetic says that every natu-
ral number is uniquely a product of primes. The heart of this uniqueness is found in
Book VII of Euclid’s Elements [3]:

Proposition 30 (Euclid’s Lemma). If a prime divides a product, then it divides one
of the factors.

Euclid begins Book VII by introducing the Euclidean algorithm. From his proof
that the Euclidean algorithm works, he deduces an algebraic result:

Porism (Algebraic Gcd Property). If a number divides two numbers, then it divides
their greatest common divisor.

Euclid’s lemma can be derived from the algebraic gcd property, but it is not at all
apparent that Euclid himself does this. We would be quite surprised if he didn’t use
this property because he points it out early on and because we expect him to make
use of the Euclidean algorithm in some significant way. In this paper, we explore the
question of just how the algebraic gcd property enters into Euclid’s proof, if indeed it
does.

Central to Euclid’s development is the idea of four numbers being proportional: a is
to b as c is to d. Euclid gives two different definitions of proportionality, one in Book
VII for numbers (“Pythagorean proportionality”) and one in Book V for general mag-
nitudes (“Eudoxean proportionality”). We will discover that it is essential to keep in
mind the difference between these two definitions and that many authorities, possibly
including Euclid himself, have fallen into the trap of believing that Eudoxean propor-
tionality for numbers is easily seen to be the same as Pythagorean proportionality.

Finally, we will suggest a way to make Euclid’s proof good after 2300 years.

2. THE EUCLIDEAN ALGORITHM. Euclid’s number theory is contained in
Books VII through IX of the Elements. At the beginning of Book VII, he presents the
Euclidean algorithm. The input to the algorithm is a pair of (positive whole) numbers
a and b with a < b, and the algorithm consists of indefinite repetition of three steps:

Repeat




1. if a divides b, return a;
2. while a < b, let b = b − a;
3. let (a, b) = (b, a).

Step 2 is the division algorithm: we keep subtracting a from b until b is less than a.
Alternatively, we write b = qa + r , where r < a, and then replace b with r . In step 3
we interchange the roles of a and b, because b is now the smaller of the two.

The Euclidean algorithm is supposed to return the greatest common divisor of a
and b. To ensure that it does requires a proof, which Euclid supplies. His proof is
essentially the first part of the following theorem, which we leave to the reader to
verify.
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Loop Invariants. If b = qa + r , then the following statements are true:

1. the common divisors of a and b are exactly the common divisors of a and r;

2. the subgroup of the integers generated by a and b is equal to the subgroup gen-
erated by a and r .

Applying the theorem each time we go through the loop in the algorithm, we see that
the set of common divisors of a and b is a loop invariant: it is the same after completing
the three steps as it was before. Thus, when we exit the algorithm, which happens when
a divides b, we are guaranteed that the greatest common divisor is returned because, if
a divides b, then a is the greatest common divisor of a and b. Euclid first proves that
the output of the algorithm is a common divisor of a and b, and then, in order to prove
that it is the greatest common divisor, he shows that any other common divisor has to
divide it, so has to be smaller. This is the algebraic gcd property that Euclid notes in
the porism.

The algebraic gcd property is the theoretical fact that is revealed by an analysis
of the Euclidean algorithm. An efficient algorithm to compute the greatest common
divisor cuts no theoretical ice. You can’t prove anything interesting from it because
any two numbers have a greatest common divisor simply because the set of common
divisors is finite. However, the fact that any other common divisor divides the great-
est common divisor is surprising and fraught with consequences. It is only through
the porism that the Euclidean algorithm can play a real role in Euclid’s number
theory.

In light of the porism, we can replace the notion of the greatest common divisor by
a purely algebraic one: an algebraic gcd of two numbers is a common divisor that is
divisible by any other common divisor. There is no reason to believe a priori that any
two numbers have an algebraic gcd, but this is exactly what the porism tells us.

Part 2 of the theorem tells us that the subgroup generated by a and b is a loop
invariant. At the end, when a is equal to the greatest common divisor of the original
a and b, it says that gcd(a, b) is in the subgroup generated by a and b, that is, we can
write

gcd(a, b) = sa + tb

for some integers s and t . This is known as Bezout’s equation. From Bezout’s equation
it is easy to prove Euclid’s porism that any common divisor of a and b must divide
gcd(a, b).

We often prove Euclid’s lemma today using Bezout’s equation. Suppose p is a prime
that divides ab. If p doesn’t divide a, then p and a have no nontrivial common divisor,
so Bezout’s equation says that there exist integers s and t such that

sp + ta = 1.

Multiplying this equation by b we get

spb + tab = b,

which shows that p divides b, since it divides ab.
Alternatively, the algebraic gcd property can be used to prove that if p does not

divide a, then gcd(pb, ab) = b, so p divides b. As we explore how Euclid himself
proves Euclid’s lemma, we will watch carefully to see if he appeals to this prop-
erty.
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3. LOOKING FOR A PROOF. We now present a slightly mythologized story of
a quest for a proof of Euclid’s lemma. More specifically, our story starts with the
question: Does Euclid have anything interesting to tell us about how to prove Euclid’s
lemma?

As indicated earlier, Euclid starts Book VII with a description of the Euclidean
algorithm, together with a porism stating that the greatest common divisor of two
numbers is divisible by any other common divisor. His proof of Euclid’s lemma refers
to Propositions 20 and 19.

Proposition 20. If u and v are the smallest numbers so that u : v = c : d, then u
divides c and v divides d.

We shall derive Euclid’s lemma from Proposition 20 in more or less the same way that
Euclid did. Suppose that a prime p divides ab, say ab = pc. Consider the fraction

a

p
= c

b
.

If u and v are the smallest numbers such that u/v = a/p, then Proposition 20 informs
us that v divides both p and b. Therefore, v = 1 or v = p because p is prime. In the
first case p divides a, in the second p divides b. Thus Proposition 20 is obviously the
key proposition. How does Euclid prove it?

We follow Heath’s paraphrase [3] of Euclid’s proof of Proposition 20. Euclid shows
that u divides c (and so v divides d), or as he phrases it, that u is part of c. This means
that

u = c

n

for some positive integer n. He does this by ruling out the alternative, that u is not part
of c, in which case we could write

u = m · c

n
,

where n divides c and m > 1. That is, c/n is an nth part of c, and u is equal to m of
those nth parts. In Proposition 4, Euclid showed how to compute such numbers m and
n from u and c using the Euclidean algorithm, and Heath refers to Proposition 4 in his
paraphrase.

Euclid now claims that u : c = v : d. This is justified by another proposition:

Proposition 13 (Alternando). If a : b = c : d, then a : c = b : d.

That’s okay, for if a/b = c/d, then a/c = b/d.
Continuing the proof of Proposition 20, Euclid notes that

v = m · d

n
.

His phrase for this is “v is the same parts of d that u is of c,” that is, v is m nth parts of d
just as u is m nth parts of c. Because m > 1, the numbers c/n and d/n are smaller than
u and v. But as c/n : c = d/n : d, it follows that c/n : d/n = c : d, which contradicts
the fact that u and v were the smallest numbers with that property. So u must divide c.
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There is a serious problem with this reasoning. We know that n divides c, because
that’s how we chose n, but why does n divide d, that is, why is d/n a (whole) num-
ber? It’s true that the Euclidean algorithm produces relatively prime numbers m and
n (although Euclid does not mention this fact), and we know that nv = md. But to
conclude from these two facts that n divides d requires more than Euclid’s lemma it-
self, and that’s what we are ultimately trying to prove! This provoked Zeuthen [12, pp.
155–157] to say that Euclid’s proof of his lemma is worthless, because Euclid had to
assume something essentially stronger than the lemma itself in order to prove Propo-
sition 20. Thus instead of finding an alternative proof of the fundamental theorem of
arithmetic, we’ve found a mistake in Euclid!

Wait a minute. This is Euclid we’re talking about, the author of the most famous
mathematics text of all time, not some undergraduate taking an introduction to number
theory. While he is surely not immune to making mistakes, this one seems rather out-
landish. Maybe if we dig a little deeper we’ll find out that he sees things more clearly
than we do. Let’s go back and check on what he’s doing, starting with the definition of
a : b = c : d.

In our analysis thus far, we took a : b = c : d to mean a/b = c/d, the usual equal-
ity of fractions: ad = bc. That was pretty naive. Everybody else, including Zeuthen,
realizes that Euclid had two very different notions of proportion, one in Book V that
dealt with arbitrary magnitudes and one in Book VII that dealt with numbers. The one
in Book V is the celebrated Greek theory of proportions that was developed to handle
incommensurable magnitudes. This theory, which has similarities with the modern
theory of real numbers, is usually associated with Eudoxus. The one in Book VII deals
with numbers, which are commensurable magnitudes—in fact, they are all multiples
of a fixed unit magnitude. It has often been suggested that the theory in Book VII is an
earlier one, perhaps due to the Pythagoreans.

Euclid certainly doesn’t mean ad = bc when he writes “a is to b as c is to d” in
Book VII. He defined what we shall call Pythagorean proportionality, to distinguish
it from the Eudoxean proportionality of Book V. We use the adjective “Pythagorean”
to indicate that this proportionality deals with whole numbers only. Here is Euclid’s
definition in modern form.

Definition 20 (Pythagorean Proportionality). We say that a : b = c : d if there exist
x, y, m, and n such that

a = mx, b = nx,

c = my, d = ny.

Notice that this can be thought of as saying that the fractions a/b and c/d have a
common cancellation, namely, m/n. Clearly this implies that ad = bc (equality of
fractions). The converse, although it is true for natural numbers, is much deeper and
fails in other multiplicative settings where unique factorization into primes does not
obtain (see Examples 1 and 2). Observe also that Pythagorean proportionality simply
says that a is m nth parts of b and that c is the same parts of d. This is pretty much
how Euclid actually phrased it.

The equivalence of Pythagorean proportionality and equality of fractions is needed
in Euclid’s proof of his lemma. Recall how he derived the lemma from Proposition 20.
He supposed that p was a prime and that ab = pc, so a/p = c/b (equality of frac-
tions). He then appealed to Proposition 20. But Proposition 20 is about Pythagorean
proportionality, not about equality of fractions. The proposition in the Elements that
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assures that Pythagorean proportionality is the same as equality of fractions is the fol-
lowing:

Proposition 19. a : b = c : d if and only if ad = bc.

We will return to Proposition 19 shortly, but first let’s see why the proof of Proposition
20 is correct, pace Zeuthen. For the crucial step, we know that u : c = v : d, so there
exist x , y, m, and n such that

u = mx, c = nx,

v = my, d = ny.

This means that n divides both c and d by definition! We don’t have to prove it. More-
over, m > 1 because we are assuming, by way of contradiction, that u does not di-
vide c. Of course, we now have to worry whether Proposition 13 (alternando) is true,
because it does not simply say that if a/b = c/d, then a/c = b/d. However, alter-
nando is easily seen to be true by interchanging the roles of m, n and x, y in the
equations of Definition 20.

Euclid didn’t prove alternando in this way because he viewed the numbers a, b, c,
d, x , and y as magnitudes, albeit all multiples of the same unit, while m and n were
things that answered the question: How many? Thus the number x is a part of the
number a, and m tells us how many xs it takes to make a. Objects like m and n have
been referred to in the modern literature as “repetition numbers” by Fowler [4] and
“scalars” by Bashmakova [1]. Fowler calls the ordinary numbers “cardinal numbers.”
Indeed, for a modern student it might help in understanding this distinction to think of
numbers as represented by finite sets. When we multiply a set a by a scalar m we take
the union of m disjoint copies of a. When Euclid wanted to multiply two numbers a
and b, he let m be the number of units in a and set ab = mb.

How, then, does Euclid prove Proposition 19, that Pythagorean proportionality is
equivalent to equality of fractions? Since this proposition is all we need to complete
the proof of Euclid’s lemma, surely we will see an appeal to the porism here, ei-
ther directly or indirectly. The interesting half of the proposition is the implication
from ad = bc to a : b = c : d. Euclid’s proof goes as follows. If ad = bc, then cer-
tainly ac : ad = ac : bc. On the other hand, it is immediate from the definition of
Pythagorean proportionality that ac : ad = c : d (take x = ay) and ac : bc = a : b.
Consequently, a : b = c : d.

Amazing! No appeal whatsoever to the porism. Euclid has provided us with a proof
of his lemma that, ironically, does not depend in an essential way on the algorithm that
bears his name, even though he began Book VII with that algorithm and its algebraic
consequences for the greatest common divisor. Can we believe that? It seems like
magic. Where did the work get done?

Well, the symbolism we’ve adopted—using the equality sign in the notation for a
proportion—is deceptive and may make it difficult for you to spot the flaw in Euclid’s
argument. Euclid himself said, “Things which equal the same thing also equal one an-
other.” Because we have internalized this axiom, it is dangerous to use an equality sign
in a situation where transitivity does not obviously hold. Please accept our apologies.
In fact, it is a nontrivial task to prove that Pythagorean proportionality is transitive.
Try it for yourself. It’s true for the positive integers, but like Euclid’s lemma, it fails
in more general multiplicative settings, as in the following two examples. Moreover,
because equality of fractions is transitive, Proposition 19 also fails.
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Perhaps the simplest setting where the fundamental theorem of arithmetic fails is
that of our first example:

Example 1. Consider the multiplicative monoid of positive integers 1, 4, 7, 10, . . . that
are congruent to 1 modulo 3. In this monoid, the numbers 4, 10, and 25 are primes,
and 4 · 25 = 10 · 10. Pythagorean proportionality is not transitive: the reader can check
that

4 : 10 = 4 · 25 : 10 · 25 = 10 · 10 : 10 · 25 = 10 : 25,

whereas 4 : 10 �= 10 : 25 because 4, 10, and 25 are primes. Moreover, the numbers 40
and 100 do not have an algebraic gcd. Indeed, the common divisors of 40 and 100 are
exactly 4 and 10, neither of which divides the other.

Our second example is more complicated, but possibly more satisfactory because it
is a system in which you can also add:

Example 2. Consider the semiring S of real numbers a + b
√

2 such that a and b are
nonegative integers, not both 0. Here we have

7(5 + 2
√

2) = (3 + 8
√

2)(1 + 2
√

2),

and all four factors are primes. Note that S is not the ring Z[√2] of algebraic integers,
where a and b are allowed to be negative and the fundamental theorem of arithmetic
holds. The only invertible element in S is 1, while 1 + √

2 and all of its powers are
invertible in Z[√2]. Pythagorean proportionality fails in S for the same reason that it
did in Example 1. Moreover, 7(5 + 2

√
2) and 7(1 + 2

√
2) do not have an algebraic

gcd.

4. HOW TO FIX EUCLID’S ARGUMENT. It’s interesting that Euclid explicitly
proves, in Proposition 11 of Book V, that Eudoxean proportionality is transitive but
fails to provide a proof that Pythagorean proportionality is transitive, even though the
proof of Proposition 19 makes essential use of this fact. Is there a simple argument we
could incorporate into Book VII to show that Pythagorean proportionality is transitive
as well?

Bashmakova [1] thought there was. She identified the unjustified use of transitivity
in the proof of Proposition 19 as the problem, as opposed to Zeuthen’s claim that the
proof of Proposition 20 suffered from petitio principii. Then she suggested using the
transitivity of Eudoxean proportionality to fix it. To that end she gave a straightforward
proof, which does not invoke the porism, that Pythagorean proportionality implies Eu-
doxean proportionality. But if this approach worked, then we would still have a proof
of Euclid’s lemma that does not appeal to the porism. The problem is that Bashmakova
did not prove the converse, namely, that Eudoxean proportionality for numbers implies
Pythagorean proportionality. That’s the part she really needed to address. Indeed, it’s
easy to prove, without using the porism, that Eudoxean proportionality for numbers is
equivalent to equality of fractions, so Proposition 19 can be viewed as saying that Eu-
doxean and Pythagorean proportionality are equivalent. From this perspective, Euclid’s
error in the proof of Proposition 19 occurs when he is proving that Eudoxean propor-
tionality implies Pythagorean proportionality—the other half of the proof is fine. In
short, Bashmakova’s fix is no fix at all. (We discovered Bashmakova’s paper from a
reference in Narkiewicz [8].)
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Heath did not comment on Euclid’s unsupported use of transitivity. However, in his
notes on Eudoxean proportionality [3, vol. 2, pp. 126–9], he gave a proof, attributed
to R. Simson, that Pythagorean proportionality is the same as Eudoxean proportion-
ality applied to whole numbers. But this proof is fatally flawed at the end, where the
different definitions of part in Books V and VII are confused: in Book V a part of a
magnitude is any submultiple of another magnitude, whereas in Book VII a part of a
number must also be another number.

The two notions of proportionality are not so easily related, although many authors
have been tempted to imagine that they are. Pythagorean proportionality is about divis-
ibility of numbers and is tailored to studying factorization. Eudoxean proportionality,
which for numbers is equivalent to equality of fractions, says nothing about factoriza-
tion. That they are equivalent for numbers is essentially the content of Proposition 19.

What is the best way to fix Euclid’s argument? We suggest a way that uses Euclid’s
porism that the greatest common divisor is an algebraic greatest common divisor, as
discussed in section 2. The idea, which may also be found in [10, Theorem 205], is
to show that if any choice of x and y establishes a Pythagorean proportion a : b = c :
d, then the canonical choices x = gcd(a, b) and y = gcd(c, d) do. Thus transitivity
holds, so the proof of Proposition 19 is fixed. Indeed, transitivity could fail only if we
were forced to use a common divisor of c and d in the proportion a : b = c : d that
was different from the one used in the proportion c : d = e : f . If we can always use
the greatest common divisor, then transitivity clearly holds.

The Fix. Suppose that a : b = c : d. If a = p gcd(a, b) and b = q gcd(a, b), then
c = p gcd(c, d) and d = q gcd(c, d).

Proof. By definition there exist m, n, x , and y such that

a = mx, b = nx,

c = my, d = ny.

Because x is a common divisor of a and b, and y is a common divisor of c and d, the
porism says that we can find i and j such that gcd(a, b) = i x and gcd(c, d) = j y. The
first thing we want to do is to show that i = j . By symmetry it suffices to show that i
divides j . Now i x divides mx , so iy divides my. Similarly, i x divides nx , so iy divides
ny. Thus iy divides both my = c and ny = d. From the porism we conclude that iy
divides gcd(c, d) = j y, so i divides j . Finally, c = p(iy) = p( j y) = p gcd(c, d) and
d = q(iy) = q( j y) = q gcd(c, d).

What kind of proof of Euclid’s lemma do we end up with? Let’s review what we’ve
done. Pythagorean proportionality is essentially a relation between fractions (not ratio-
nal numbers), a priori stronger than the usual equivalence. It says that a/b is related to
c/d if a/b and c/d have a common cancellation, namely, m/n with m and n as in Def-
inition 20. (Of course, Euclid would never phrase it that way, because for him m and
n are entities of a type different from a and b, as discussed after Proposition 19.) The
porism to the Euclidean algorithm can be used to show that this relation is transitive
via our fix, and transitivity is used to show that it is equivalent to equality of fractions
ad = bc (Proposition 19). Then, because Pythagorean proportionality is equivalent to
equality of fractions, we see that if we cancel a/b as much as possible, we get the
smallest fraction equivalent to a/b under equality of fractions (lowest terms). That’s
not clear without Proposition 19: it could have been that a and b were relatively prime,
yet a/b was not in lowest terms in the sense that there were smaller numbers c and d
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so that a/b = c/d. (In Example 1, the numbers 10 and 25 are relatively prime, but the
formal fraction 10/25 is not in lowest terms because 10/25 = 4/10.) The equivalence
of the two conditions (i) that a and b are relatively prime and (ii) that a/b is in lowest
terms lies at the heart of Euclid’s proof.

To establish Euclid’s lemma, we assume that p is a prime that divides ab, say
ab = pc. Then a/p = c/b, from which it follows that a/p and c/b have a com-
mon cancellation because equality of fractions implies Pythagorean proportionality
(Proposition 19). Now either p divides a and we’re done, or p does not divide a, so
we can’t cancel a/p because p is prime. In the latter case c/b must cancel down to
a/p (Proposition 20), implying that p divides b.

5. CANONICAL PARTS. Focusing on the greatest common divisor suggests that
perhaps Euclid always had canonical parts in mind when he dealt with Pythagorean
proportion. (This more or less corresponds to our normally thinking of fractions as
being in lowest terms.) If one required canonical parts throughout, then the transitivity
needed in the proof of Proposition 19 would be trivial, scarcely worth mentioning. In
fact, Zeuthen (in a later paper [13, pp. 395–435]) and Itard [5] proposed this interpre-
tation. They believed that when Euclid showed how to construct the greatest common
divisor using the Euclidean algorithm and gave its algebraic properties in the porism,
he was at the same time showing how to interpret the proportion a : b = c : d. Indeed,
in the proof of Proposition 4 near the beginning of Book VII, Euclid wrote a as m nth
parts of b by using the Euclidean algorithm to construct b/n = gcd(a, b).

Why doesn’t the canonical-parts interpretation of Pythagorean proportionality solve
the whole problem? Bashmakova entertained such an idea but rejected it, partly be-
cause of another of Euclid’s propositions in Book VII:

Proposition 6. If a : b = c : d, then a : b = (a + c) : (b + d).

This proposition, which follows easily for Pythagorean proportionality using Euclid’s
proof, requires substantial additional argument to prove under the canonical parts in-
terpretation. Itard [5] points out this problem. Although it is not apparent from our
presentation, Proposition 6 is essential for Euclid’s development of the proof of his
lemma. The proof we gave for Proposition 13 (alternando) is not Euclid’s, and while
it works for Pythagorean proportionality, it is inadequate under the canonical parts
interpretation. Euclid’s quite different proof of alternando, which is valid under both
interpretations (as are most of his propositions), relies on Proposition 6.

Moreover, alternando is required at a key step in the proof of Proposition 19 under
the canonical parts interpretation: the step where one observes that ac : ad = c : d.
That’s clear for Pythagorean proportionality but not for canonical parts. However, ac :
c = ad : d is clear for canonical parts (the greatest common divisors are c and d), and
alternando converts this statement to ac : ad = c : d. Euclid actually goes through
alternando to prove Proposition 19. Thus if his proof of Proposition 6 is flawed, so
ultimately is his proof of Euclid’s lemma.

What is wrong with the proof of Proposition 6 under the canonical parts interpreta-
tion? Suppose that

a = mx, b = nx,

c = my, d = ny,

where x = gcd(a, b) and y = gcd(c, d). Then clearly

a = mx, b = nx,

a + c = m(x + y), b + d = n(x + y),
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but we still have to verify that x + y = gcd(a + c, b + d). This follows from our fix,
so that theorem also serves to repair Euclid’s proof of his lemma under the canonical
parts interpretation.

Thus the overall picture of Euclid’s arguments leading to the proof of his lemma is
as follows. The proof of Proposition 19 is not valid for Pythagorean proportionality,
while the proof of Proposition 6 is not valid under the canonical parts interpretation.
Our fix, which relies on the porism, establishes that the two interpretations are equiv-
alent, thereby salvaging Euclid’s line of reasoning under either interpretation. These
two interpretations, and our fix, were spelled out by Taisbak in [10].

6. CONCLUSION. In an attempt to discover how Euclid proved the key lemma for
the fundamental theorem of arithmetic, we ran into the question of whether Euclid
used, or needed to use, the Euclidean algorithm in an essential way. As written, his
proof makes no essential appeal to the algorithm. On the other hand, in his proof of
Proposition 19, which asserts that Pythagorean proportionality is equivalent to equality
of fractions (and thus to Eudoxean proportionality), Euclid unjustifiably assumes that
Pythagorean proportionality is transitive. This gap can be filled with an argument that
uses the porism to the Euclidean algorithm, and it seems reasonable that Euclid could
and should have supplied such an argument. The fact that Pythagorean proportionality
follows from equality of fractions has been called the Vierzahlensatz. This theorem
is proved and elaborated upon by Surányi [9], who claims that it had been noted by
Euler.

Transitivity of Pythagorean proportionality has been spotlighted by our investiga-
tion. Its significance is put into perspective by its connection with two other mul-
tiplicative properties: the existence of algebraic gcds and the uniqueness of prime
factorization. In a cancellative commutative monoid with the divisor chain condition,
these three properties are equivalent. For the natural numbers other completely differ-
ent approaches to Euclid’s lemma and unique factorization are available. One can use
induction, or the geometric approach of Surányi [9].

Several modern commentators have overlooked the transitivity gap in Euclid’s
proof of Proposition 19, or the gap in Proposition 6 under the canonical parts al-
ternative [2], [3], [6], [7], [11], [13]. Some have been deceived into thinking that
Pythagorean proportionality is easily proved to be a special case of Eudoxean propor-
tionality [1], [3], [6] without appealing to the porism to the Euclidean algorithm. In
fact, Pythagorean proportionality is a priori more stringent than Eudoxean proportion-
ality applied to numbers, as our two examples in other multiplicative settings show.
For the natural numbers, Pythagorean and Eudoxean proportionality are equivalent,
but establishing this fact is nontrivial.

How could Euclid have left such a large gap? When he defined Eudoxean propor-
tionality for magnitudes, he proved that it was transitive (Proposition 11 of Book V).
In Book VII he defined Pythagorean proportionality in a completely different way, but
assumed without proof that it, too, was transitive. While the transitivity is not obvious,
he could have obtained it from the porism with which he began Book VII. It remains
extraordinarily perplexing that Euclid stated the porism, but failed to use it where he
most needed it.

Finally, the common view today is that Eudoxean proportionality is a sophisticated
idea that subsumed the simpler Pythagorean proportionality and made it obsolete. Our
analysis indicates that, on the contrary, Pythagorean proportionality is not an immedi-
ate special case of Eudoxean proportionality. It is a priori a strictly stronger relation,
especially suited for studying divisibility.
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