References
-
1
-
N.H. Abel, Oeuvres Complètes de N.H. Abel, mathématicien,
Nouvelle édition, M.M.L. Sylow and S. Lie (eds.), 2 vols., Oslo,
1881. (See also Johnson Reprint Corp., 1964.)
-
2
-
L.M. Adleman and D.R. Heath-Brown, The First Case of Fermat's
Last Theorem, Invent. Math. 79 (1985), 409--416.
-
3
-
Archimedes, Works, T.L. Heath (ed.), Dover, New York.
-
4
-
Aristotle, Physics, vol. II, P. Wicksteed and F. Cornford
(transl.), Harvard University Press, Cambridge, 1960.
-
5
-
W. Aspray and P. Kitcher, History and Philosophy of Modern Mathematics,
University of Minnesota Press, Minneapolis, MN, 1988.
-
6
-
A. Baker, A Concise Introduction to the Theory of Numbers,
Cambridge University Press, New York, 1984.
-
7
-
K. Barner, Paul Wolfskehl and the Wolfskehl Prize, Notices
of the Amer. Math. Soc. 44 (1997), 1294--1303.
-
8
-
M. Baron, The Origins of the Infinitesimal Calculus, Dover,
New York, 1969.
-
9
-
I. Bashmakova, Diophantus and Diophantine Equations, Math.
Assoc. of Amer., Washington, D.C., 1997.
-
10
-
P. Beckmann, A History of Pi, Dorset Press, New York, 1971.
-
11
-
P. Benacerraf and H. Putnam, Philosophy of Mathematics, Cambridge
University Press, Cambridge, 2nd ed., 1983; transl. from Mathematische
Annalen (Berlin) vol. 95 (1926), 161--190.
-
12
-
J.L. Berggren, Episodes in the Mathematics of Medieval Islam,
Springer-Verlag, New York, 1986.
-
13
-
N. Biggs, E. Lloyd, and R. Wilson, Graph theory 1736--1936,
Oxford University Press, Oxford, 1976.
-
14
-
G. Birkhoff and U. Merzbach, A Source Book in Classical Analysis,
Harvard University Press, Cambridge, Mass., 1973.
-
15
-
B. Bolzano, Theory of Science (transl. by R. George), University
of California Press, Berkeley, 1972.
-
16
-
B. Bolzano, Paradoxes of the Infinite, Yale University Press,
New Haven, 1950, translation of Paradoxien des Unendlichen, Leipzig,
1851.
-
17
-
B. Bolzano, Paradoxien des Unendlichen, Mayer & Müller,
Berlin, 1889.
-
18
-
R. Bonola, Non-Euclidean Geometry, 1906, Dover, New York,
1955.
-
19
-
U. Bottazzini, The Higher Calculus: A History of Real and Complex
Analysis from Euler to Weierstrass, Springer, New York, 1986.
-
20
-
C. Boyer, A History of Mathematics, John Wiley & Sons,
New York, 1968.
-
21
-
C. Boyer, The History of the Calculus and its Conceptual Development,
Dover, New York, 1949.
-
22
-
C. Boyer, History of Analytic Geometry, The Scholar's Bookshelf,
Princeton, 1988.
-
23
-
L.L. Bucciarelli and N. Dworsky, Sophie Germain: An Essay in the
History of the Theory of Elasticity, D. Reidel Publishing Co., Dordrecht,
Holland, 1980.
-
24
-
R. Calinger (ed.), Vita Mathematica: Historical Research and Integration
with Teaching, Math. Assoc. of Amer., Washington, D.C., 1996.
-
25
-
R. Calinger (ed.), Classics of Mathematics, 2nd edition, Prentice-Hall,
Englewood Cliffs, New Jersey, 1995.
-
26
-
G. Cantor, Contributions to the Founding of the Theory of Transfinite
Numbers, Dover, New York, 1952.
-
27
-
Briefwechsel Cantor--Dedekind, E. Noether and J. Cavaillès
(eds.), 1937, Hermann, Paris.
-
28
-
G. Cantor, Gesammelte Abhandlungen, E. Zermelo (ed.), Georg
Olms Verlagsbuchhandlung, Hildesheim, 1962.
-
29
-
G. Cardano, The Great Art or The Rules of Algebra, transl.
into English by T.R. Witmer, MIT Press, Cambridge, 1968; from the original
Ars Magna, Nürnberg, 1545.
-
30
-
A. Cauchy, Oeuvres Complètes (2), Académie des
Sciences, 1882--1981.
-
31
-
A. Cauchy, Résumé ... sur le Calcul Infinitésimal,
Edition Marketing, Paris, 1994.
-
32
-
B. Cavalieri, Exercitationes Geometricae Sex, Bologna, 1647,
reprinted by Istituto Statale d'Arte di Urbino, 1980.
-
33
-
D. Cox, Introduction to Fermat's Last Theorem, American Mathematical
Monthly 101 (1994), 3--14.
-
34
-
H.S.M. Coxeter, Introduction to Geometry, Wiley, New York, 1969.
-
35
-
A.D. Dalmédico, Sophie Germain, Scientific American,
December 1991, 77--81.
-
36
-
J. Dauben, Georg Cantor: His Mathematics and Philosophy of the
Infinite, Princeton University Press, Princeton, NJ, 1990.
-
37
-
J. Dauben, Abraham Robinson: The Creation of Nonstandard Analysis:
A Personal and Mathematical Odyssey, Princeton University Press, Princeton,
NJ, 1995.
-
38
-
R. Dedekind, Essays on the Theory of Numbers, Dover, New York,
1963.
-
39
-
Diophantus, Diophanti Alexandrini arithmeticorum libri sex, et
de numeris multangulis liber unus, Toulouse, 1670.
-
40
-
L.E. Dickson, Introduction to the Theory of Numbers, University
of Chicago Press, Chicago, 1929.
-
41
-
L.E. Dickson, History of the Theory of Numbers, Chelsea Publishing,
New York, 1992.
-
42
-
Dictionary of Scientific Biography, C.C. Gillispie and F.L.
Holmes (eds.), Scribner, New York, 1970.
-
43
-
E.J. Dijksterhuis, Archimedes, Princeton University Press,
Princeton, New Jersey, 1987.
-
44
-
W. Dunham, A ``Great Theorems'' Course in Mathematics, Amer.
Math. Monthly 93 (1986), 808--811.
-
45
-
W. Dunham, Journey Through Genius, John Wiley, New York, 1980.
-
46
-
P. Dupuy, La Vie d'Evariste Galois, Annales de l'Ecole Normale,
vol. III (1896), 197--266.
-
47
-
H.M. Edwards, Fermat's Last Theorem: A Genetic Introduction to
Number Theory, Springer Verlag, New York, 1977.
-
48
-
H.M. Edwards, Galois Theory, Springer Verlag, New York, 1984.
-
49
-
Encyclopedia Britannica, 15th ed., 1986.
-
50
-
F. Engel and P. Stäckel, Die Theorie der Parallellinien von
Euklid bis auf Gauss, Teubner, Leibzig, 1895.
-
51
-
Euclid, The Thirteen Books of Euclid's Elements, T.L. Heath
(ed.), Dover, New York, 1956.
-
52
-
L. Euler, ``Theorematum quorundam arithmeticorum demonstrationes,''
Commentarii Academiae Scientiarum Petropolitanae 10, 1738 publ.
1747, pp. 125--46, in Opera omnia, ser. I, vol. 2, pp. 36--58.
-
53
-
L. Euler, Vollständige Anleitung zur Algebra, Saint Petersburg,
1770, in Opera omnia, ser. I, vol. 1 (see also ser. I, vol. 5) (English
translation: Elements of Algebra, translated by John Hewlett, Springer-Verlag,
New York, 1984).
-
54
-
L. Euler, Correspondence Mathématique et Physique de Quelques
Célèbres Géomètres du XVIIIème Siècle,
Tome I, P.-H. Fuss (ed.), St. Petersburg, 1843, reprinted in The Sources
of Science, No. 35, Johnson Reprint Co., New York and London, 1968.
-
55
-
L. Euler, Introduction to analysis of the infinite (transl.
John D. Blanton), Springer-Verlag, New York, 1988.
-
56
-
H. Eves, Great Moments in Mathematics (before 1650), Mathematical
Association of America, Washington, DC, 1983.
-
57
-
A. Fantoli (transl. G.V. Coyne), Galileo, Studi Galileiani,
vol. 3, Vatican Observatory, 1994, 480--488.
-
58
-
J. Fauvel and J. Gray (eds.), The History of Mathematics: A Reader,
MacMillan Press, London, 1987.
-
59
-
P. de Fermat, Oeuvres, P. Tannery (ed.), Paris, 1891--1922.
-
60
-
M. Fierz, Girolamo Cardano, Birkhäuser, Boston, 1983.
-
61
-
A. Fraenkel, On the Foundations of Cantor--Zermelo Set Theory,
Mathematische Annalen 86 (1922), 230--237.
-
62
-
A. Fraenkel and Y. Bar-Hillel, Foundations of Set Theory,
North-Holland, Amsterdam, 1958.
-
63
-
A. Fraenkel, Abstract Set Theory, North-Holland, Amsterdam,
1953.
-
64
-
J. Friberg, Methods and Traditions of Babylonian Mathematics,
Historia Mathematica 8 (1981), 277--318.
-
65
-
G. Galilei, Dialogues Concerning Two New Sciences, Dover,
New York, 1954.
-
66
-
E. Galois, Ecrits et Mémoires Mathématiques d'Evariste
Galois, (R. Bourgne and J.-P. Azra, eds.) Gauthiers-Villars, Paris,
1962.
-
67
-
L. Gå rding and C. Skau, Niels Henrik Abel and Solvable
Equations, Arch. Hist. Exact Sci. 48 (1994), 81--103.
-
68
-
C.F. Gauss, Disquisitiones Arithmeticae (English translation),
Yale University Press, New Haven, 1966.
-
69
-
S. Germain, Unpublished letter to C.F. Gauss, Niedersächsische
Staats- und Universitätsbibliothek Göttingen.
-
70
-
S. Germain, Papiers de Sophie Germain, MS. FR9114, Bibliothèque
Nationale, Paris.
-
71
-
P. Giblin, Primes and Programming, Cambridge University Press,
New York, 1993.
-
72
-
J. Grabiner, The Origins of Cauchy's Rigorous Calculus, M.I.T.
Press, Cambridge, Mass., 1981.
-
73
-
I. Grattan-Guinness, Towards a Biography of Georg Cantor,
Annals of Science 27 (1971), 345--391.
-
74
-
I. Grattan-Guinness, An Unpublished Paper by Georg Cantor: Principien
einer Theorie der Ordnungstypen. Erster Mittheilung, Acta Math. 124
(1970), 65--107.
-
75
-
I. Grattan-Guinness, The Development of the Foundations of Mathematical
Analysis from Euler to Riemann, M.I.T. Press, Cambridge, Mass., 1970.
-
76
-
I. Grattan-Guinness, The Rediscovery of the Cantor--Dedekind Correspondence,
Jahresbericht d. Deutsch. Math. Verein. 76 (1974), 104--139.
-
77
-
I. Grattan-Guinness (ed.), From the Calculus to Set Theory, 1630--1910:
An Introductory History, Gerald Duckworth and Co., London, 1980.
-
78
-
J. Gray, Ideas of Space: Euclidean, Non-Euclidean, and Relativistic,
2nd ed., Oxford University Press, 1989.
-
79
-
L. Grinstein and P. Campbell (eds.), Women of Mathematics: A Biobibliographic
Sourcebook, Greenwood Press, New York, 1987.
-
80
-
E. Grosswald, Representations of Integers as Sums of Squares,
Springer-Verlag, New York, 1985.
-
81
-
E. Hairer, G. Wanner, Analysis by its History, New York, Springer-Verlag,
1996.
-
82
-
R.R. Hamburg, The Theory of Equations in the 18th Century: The
Work of Joseph Lagrange, Archive for the History of the Exact Sciences
16 (1976/7), 17--36.
-
83
-
T. Hawkins, Lebesgue's Theory of Integration: Its Origins and
Development, Chelsea, New York, 1975.
-
84
-
T.L. Heath, A History of Greek Mathematics, Vols. I and II,
Oxford University Press, London, 1921.
-
85
-
T.L. Heath, A Manual of Greek Mathematics, Dover, New York,
1963.
-
86
-
T.L. Heath, Diophantus of Alexandria, Dover, New York, 1964.
-
87
-
J. van Heijenoort, From Frege to Gödel, A Source Book in
Mathematical Logic, 1879--1931, Harvard University Press, Cambridge,
1967.
-
88
-
D. Hilbert, The Foundations of Geometry, translated by E.J.
Townsend, Open Court, LaSalle, Illinois, 1902.
-
89
-
D.R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid,
Basic Books Inc., New York, 1979.
-
90
-
International Study Group on the History and Pedagogy of Mathematics
Newsletter.
-
91
-
G. Joseph, The Crest of the Peacock: Non-European Roots of Mathematics,
Penguin Books, London, 1992.
-
92
-
J.-P. Kahane and P. Lemarié-Rieusset, Fourier Series and
Wavelets, Gordon and Breach Publ., Luxembourg, 1995.
-
93
-
V. Katz, A History of Mathematics, Harper Collins, New York,
1993.
-
94
-
B.M. Kiernan, The Development of Galois Theory from Lagrange to
Artin, Arch. Hist. Exact Sci. 8 (1971), 40--154.
-
95
-
F. Klein, Vorlesungen über das Ikosaeder, Teubner, Leibzig,
1884; republished by Birkhäuser Verlag, Boston, 1993; Engl. transl.
The Icosahedron, 2nd. ed., Dover, New York, 1956.
-
96
-
F. Klein, Geometry, 3rd ed., Springer-Verlag, Berlin, 1925;
published in English transl. by Dover Publ., New York, 1939.
-
97
-
M. Kline, Mathematical Thought from Ancient to Modern Times,
Oxford University Press, New York, 1972.
-
98
-
W. Knorr, The Ancient Tradition of Geometric Problems, Dover,
New York, 1993.
-
99
-
W. Knorr, The Method of Indivisibles in Ancient Geometry,
in Vita Mathematica: Historical Research and Integration with Teaching
(ed. Ronald Calinger), Mathematical Association of America, Washington,
D.C., 1996, 67--86.
-
100
-
E. Kummer, Collected Papers, vol. 1, André Weil (ed.),
Springer-Verlag, New York, 1975.
-
101
-
J.L. Lagrange, Refléxions sur la Résolution Algébrique
des Equations, in Oeuvres de Lagrange, v. 3, Gauthier-Villars, Paris,
1869.
-
102
-
R. Laubenbacher and D. Pengelley, A Reevaluation of Sophie Germain's
Work on Fermat's Last Theorem, in preparation.
-
103
-
R. Laubenbacher, D. Pengelley, and M. Siddoway, Recovering Motivation
in Mathematics: Teaching with Original Sources, Undergraduate Mathematics
Education Trends 6:4 (Sept. 1994).
-
104
-
R. Laubenbacher and D. Pengelley, Great Problems of Mathematics:
A course Based on Original Sources, Amer.\ Math. Monthly 99
(1992), 313--317.
-
105
-
R. Laubenbacher and D. Pengelley, Mathematical Masterpieces: Teaching
with Original Sources, Vita Mathematica: Historical Research and Integration
with Teaching (R. Calinger, ed.), Math. Assoc. of Amer., Washington, D.C.,
1996, 257--260.
-
106
-
H. Lebesgue, Development of the Integral Concept, translated
in Measure and the Integral (ed. K.O. May), Holden-Day, San Francisco,
1966, 177--194.
-
107
-
A.M. Legendre, Sur Quelques Objets d'Analyse Indeterminée
et Particulièrement sur le Théorème de Fermat,
Second Supplément (Sept. 1825) to Théorie des Nombres,
Second Edition, 1808.
-
108
-
A.M. Legendre, Éléments de Géométrie,
avec des Notes, various editions, Paris, Firmin Didot, 1794-- .
-
109
-
A.M. Legendre, Réflexions sur Différentes Manières
de Démontrer la Théorie des Parallèles ou le Théorème
sur la Somme des Trois Angles du Triangle, Mémoires de l'Académie
(Royale) des Sciences (de l'Institut de France), 2nd series, volume 12
(1833), 367--410, plus sheet of figures.
-
110
-
G.W. Leibniz, Mathematische Schriften, vol. V, C.I. Gerhardt
(ed.), Georg Olms, Hildesheim, 1962.
-
111
-
Lexikon Bedeutender Mathematiker, Verlag Harri Deutsch, Thun
/ Frankfurt (M.), 1990.
-
112
-
J. Lützen, Joseph Liouville, Springer-Verlag, New York,
1990.
-
113
-
M.S. Mahoney, The Mathematical Career of Pierre de Fermat,
Princeton University Press, Princeton, 1994.
-
114
-
E. Maor, e, The Story of a Number, Princeton University
Press, Princeton, NJ, 1994.
-
115
-
D.A. Marcus, Number Fields, Springer-Verlag, New York, 1977.
-
116
-
J.-C. Martzloff, A History of Chinese Mathematics, Springer-Verlag,
Berlin, 1997.
-
117
-
B. Mazur, Number Theory as Gadfly, Amer. Math. Monthly 98
(1991), 593--610.
-
118
-
K. Menger, Dimensionstheorie, Teubner, Leipzig, 1928.
-
119
-
K. Menninger, Number Words and Number Symbols, A Cultural History
of Numbers, The MIT Press, Cambridge, 1969.
-
120
-
H. Meschkowski, Probleme des Unendlichen, Vieweg u. Sohn,
Braunschweig, 1967.
-
121
-
H. Meschkowski, Ways of Thought of Great Mathematicians, Holden-Day
Publ., San Francisco, 1964.
-
122
-
H. Midonick, The Treasury of Mathematics, Philosophical Library,
Inc., New York, 1965.
-
123
-
A.W. Moore, The Infinite, Routledge, New York, 1991.
-
124
-
G.H. Moore, Zermelo's Axiom of Choice: Its Origins, Development
and Influence, Springer-Verlag, New York, 1982.
-
125
-
G.H. Moore, Towards a History of Cantor's Continuum Problem,
in The History of Modern Mathematics I, pp. 79--121, J. McCleary and D.
Rowe (eds.), Academic Press, San Diego, 1989.
-
126
-
L.J. Mordell, Three Lectures on Fermat's Last Theorem, Chelsea
Publishing Co., New York, 1962.
-
127
-
O. Neugebauer, The Exact Sciences in Antiquity, 2nd edition,
Dover, New York, 1969.
-
128
-
O. Neugebauer, Mathematische Keilschrifttexte, Quellen und
Studien, A 3, Berlin, 1935.
-
129
-
O. Neugebauer and A. Sachs, Mathematical Cuneiform Texts,
Amer. Oriental Soc., New Haven, Conn., 1945.
-
130
-
J.R. Newman, The World of Mathematics, Simon and Schuster,
New York, 1956.
-
131
-
O. Ore, Number Theory and its History, Dover, New York, 1988.
-
132
-
L.M. Osen, Women in Mathematics, The MIT Press, Cambridge,
1974.
-
133
-
H. Poincaré, Oeuvres, Gauthier-Villars, Paris, 1916--1956.
-
134
-
Proclus, A Commentary on the First Book of Euclid's Elements,
tr. G.R. Morrow, Princeton University Press, 1970.
-
135
-
W. Purkert and H.J. Ilgauds, Georg Cantor, 1845--1918, Birkhäuser,
Basel, 1987.
-
136
-
R. Rashed (ed.), Diophantus, Lés Arithmétiques.
Livres IV--VII, Zweisprachige Ausg. ( Oeuvres de Diophante, vol.
III et IV), Les Belles Lettres, Paris, 1984.
-
137
-
P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag,
New York, 1979.
-
138
-
K. Ribet and B. Hayes, Fermat's Last Theorem and Modern Arithmetic,
American Scientist 82 (1994), 144--156.
-
139
-
B. Riemann, Collected Works, H. Weber (ed.), Dover, New York,
1953.
-
140
-
A. Robinson, Non-standard Analysis, 2nd edition, North-Holland,
Amsterdam, 1974.
-
141
-
A. Robinson, Numbers---What Are They and What Are They Good For,
Yale Scientific Magazine 47, 14--16.
-
142
-
S. Rockey and M. Paolillo, Bibliography of Collected Works of
Mathematicians, Cornell University Mathematics Library, Ithaca, New
York, 1997; http://math.cornell.edu/ library/.
-
143
-
T. Rothman, Genius and Biographers---the Fictionalization of Evariste
Galois, Amer. Math. Monthly 89 (1982), 84--106.
-
144
-
B.A. Rosenfeld, A History of Non-Euclidean Geometry: Evolution
of the Concept of Geometric Space, Springer-Verlag, New York, 1988.
-
145
-
R. Rucker, Infinity and the Mind, Bantam Books, New York,
1983.
-
146
-
P. Ruffini, Opere Matematiche (3 vols.) E. Bortolotti (ed.),
Ed. Cremonese della Casa Editrice Perella, Rome, 1953--1954.
-
147
-
S. Russ, A Translation of Bolzano's Paper on the Intermediate
Value Theorem, Historia Mathematica 7 (1980), 156--185.
-
148
-
S. Russ,``Bolzano's Analytic Programme,'' Mathematical Intelligencer
14, No. 3 (1992), 45--53.
-
149
-
B. Russell, Principles of Mathematics, W. W. Norton &
Co., New York, 1903.
-
150
-
G. Saccheri, Euclides Vindicatus, Milano, 1733, reprinted by Chelsea
Publ. Co., New York, 1986.
-
151
-
C. Schilling and J. Kramer, Wilhelm Olbers, Sein Leben und Seine
Werke, vol. I, Berlin, 1900/09.
-
152
-
I. Schneider, Die Situation der mathematischen Wissenschaften
vor und zu Beginn der wissenschaftlichen Laufbahn von Gauß ,
in Carl Friedrich Gauß (1777--1855), I. Schneider (ed.), Minerva
Publikation, Munich, 1981.
-
153
-
M.R. Schroeder, Number Theory in Science and Communication,
2nd ed., Springer-Verlag, New York, 1990.
-
154
-
H.A. Schwarz, Über diejenigen Fälle, in welchen die
Gaußische hypergeometrische Reihe eine algebraische Function ihres
vierten elementes darstellt, J. Reine u. Angewandte Mathematik 75
(1872), 292--335.
-
155
-
J. Sesiano (ed.), Books IV to VII of Diophantus' Arithmetica in
the Arabic Translation Attributed to Qusta Ibn Luqa, Springer-Verlag,
New York, 1982.
-
156
-
M.-K. Siu, The ABCD of Using History of Mathematics in the Classroom,
Bulletin of the Hong Kong Mathematical Society 1:1 (1997), 143--154.
-
157
-
G. Simmons, Calculus Gems: Brief Lives and Memorable Mathematics,
McGraw-Hill, New York, 1992.
-
158
-
S. Singh and K. Ribet, Fermat's Last Stand, Scientific American,
Nov. 1997.
-
159
-
D.E. Smith, History of Mathematics, Dover, New York, 1958.
-
160
-
D.E. Smith, A Source Book in Mathematics, Dover, New York,
1959.
-
161
-
D. Solow, How to Read and Do Proofs (2nd ed.), J. Wiley &
Sons, New York, 1990.
-
162
-
S. Stahl, The Poincaré Half-Plane; A Gateway to Modern
Geometry, Jones and Bartlett, Boston, 1993.
-
163
-
I.N. Stewart and D.O. Tall, Algebraic Number Theory, Chapman
& Hall, London, 1987.
-
164
-
J. Stillwell, Sources of Hyperbolic Geometry, American Mathematical
Society, Providence, Rhode Island, 1996.
-
165
-
P. Straffin, Liu Hui and the First Golden Age of Chinese Mathematics,
Mathematics Magazine 71 (1998), 163--181.
-
166
-
D.J. Struik, A Source Book in Mathematics, 1200--1800, Princeton
University Press, Princeton, 1986.
-
167
-
F. Swetz, J. Fauvel, O. Bekken, B. Johansson, V. Katz (eds.), Learn
from the Masters!, Math. Assoc. of Amer., Washington, D.C., 1995.
-
168
-
F. Swetz (ed.), From Five Fingers to Infinity: A Journey Through
the History of Mathematics, Open Court, Chicago, 1994.
-
169
-
J.-P. Tignol, Galois' Theory of Algebraic Equations, John
Wiley & Sons, New York, 1980.
-
170
-
I. Todhunter (ed.), Euclid's Elements, J.M. Dent & Sons
Ltd., London, 1862.
-
171
-
C. Vanden Eynden, Elementary Number Theory, Random House,
New York, 1987.
-
172
-
F. Viète, The Analytic Art, Kent State University Press,
Kent, Ohio, 1983.
-
173
-
B.L. Van Der Waerden, Science Awakening, P. Noordhoff Ltd.,
Groningen, Holland, 1954.
-
174
-
B.L. Van Der Waerden, Die Galoische Theorie von Heinrich Weber
bis Emil Artin, Arch. Hist. Exact Sci. 9 (1972), 240--248.
-
175
-
B.L. Van Der Waerden, Modern Algebra, F. Ungar Publ., New
York, 1949.
-
176
-
S. Wagon, The Banach--Tarski Paradox, Cambridge University
Press, New York, 1993.
-
177
-
A. Weil, Number Theory: An Approach Through History; From Hammurapi
to Legendre, Birkhäuser, Boston, 1983.
-
178
-
E. Winter (ed.), Bernard Bolzano: Ausgewählte Schriften,
Union Verlag, Berlin, 1976.
-
179
-
H. Wussing, The Genesis of the Abstract Group Concept, MIT
Press, Cambridge, 1984.
-
180
-
E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre.
I., Math. Annalen 65 (1908), 261--281.
-
181
-
H.G. Zeuthen, Geschichte der Mathematik im Altertum und Mittelalter,
Teubner, Leipzig, 1912.
To main page on
Teaching with Original Historical
Sources in Mathematics