T. Matthew Evans (Oregon State University, Corvallis, OR)
Dr. J. Carlos Santamarina (King Abdullah University of Science and Technology)
Dr. Julio Valdes (San Diego State University, San Diego, CA)
Dr. César Pastén (Universidad de Chile, Santiago, Chile)
Dr. Sheng Dai (Georgia Institute of Technology, Atlanta, GA)
Dr. Paola Bandini (New Mexico State University, Las Cruces, NM)
Ammar Ali, Ph.D., graduated 2018
Sheldon John, M.S., graduated 2018
Rodolfo Rascón de Lira, Ph.D., graduated 2018
Mark Breitnauer, M.S., graduated 2017
Sarah Garduno, M.S., graduated 2016
Rachelle Mason, M.S., graduated 2016
Ali Nasirian, Ph.D., graduated 2016
Louis Romero, M.S., graduated 2016
Allison Jenness, M.S., graduated 2014
Mark Ormand, M.S., graduated 2014
Sarah Williamson, M.S., graduated 2013
CE 357 - Soil Mechanics
CE 470 - Landfill Design
CE 479 - Pavement Analysis and Design
CE 506 - Advanced Soil Mechanics
CE 577 - Advanced Pavement Analysis and Design
CE 579 - Ground Improvement
CE 596 - Special Topics: Engineered Thermoactive Geomaterials
CE 508 - Advanced Soil Behavior
COE 2001 - Engineering Statics
CEE 4405 - Introduction to Geotechnical Engineering (Laboratory)
Undergraduate Courses: 3.39 [Department average: 3.31]
Graduate Courses: 3.46 [Department average: 3.28]
The focus of our research efforts lies in the development of creative solutions to geotechnical engineering challenges that stem from the characteristic performance levels of soils in their natural state.
In classical geotechnical engineering areas, performance is most often defined in terms of mechanical properties such as strength and stiffness. While soil improvement in these areas is already a mature field, modern sustainability challenges force us to revisit conventional methods used to engineer geomaterials. Through improved understanding of soil behavior, we work to optimize the use of available improvement methods that carry low sustainability ratings, while also identifying suitable sustainable alternatives. Our interest in classical problems is also driven by our desire to bridge the gap between the state of the art and the state of the practice.
In contemporary geo-challenges, performance is defined in a variety of forms and often involves intricate relationships between mechanical, thermal, hydraulic, and biological properties. Such modern challenges encompass coupled phenomena that create the need for engineered geomaterials capable of fulfilling multiple roles simultaneously. Our work in these areas is in many aspects pioneering in the field of geotechnical engineering, but borrows heavily from the vast available knowledge in physics, chemistry, and biology.
Heat induced changes in soils with polymeric admixtures: recycled polymer bonding and dissolution protection coatings.
Reclaimed asphalt pavements (granular composites): revised characterization, resource recovery and management.
Geotechnical aspects of pavements: unconventional pavement structures with enhanced performance from unbound aggregate layers.
Soil-cement mechanistic mixture design: minimizing cement while maximizing performance.
Smart Backfills for geothermal borehole heat exchangers.
Bioinspired geosensors.
17. ηRomero, L., ηCortes, D. D., and , Valdes, J. R., 2018. “Experimental assessment of the heal-ability of a polymer bonded sand.” Construction and Building Materials, v 166, 30 March 2018, pp 610-617, doi.org/10.1016/j.conbuildmat.2018.01.184
16. ηRomero, L., ηMendoza, L. ηNasirian, A., ηCortes, D. D., and , Valdes, J. R., 2018. “A Thermal Direct Shear Device for Testing Polymer-Bonded Sands.” Geotechnical Testing Journal, v 41, n 3, pp 611-618, doi.org/10.1520/GTJ20160281
15. Miranda, L. V., Valdes, J. R., and ηCortes, D. D., 2017. “Solar bricks for lunar construction.” Construction and Building Materials, v 139, 15 May 2017, pp 241-246, doi.org/10.1016/j.conbuildmat.2017.02.029
14. Papadopoulos, E., ηCortes, D. D., and Santamarina, J. C., 2016. “In-situ assessment of the stress-dependent stiffness of unbound aggregate bases: application in inverted base pavements.” International Journal of Pavement Engineering, v 17, n 10, pp 870-877, doi.org/10.1080/10298436.2015.1022779
13. ηRascon, R., ηCortes, D. D., and Pasten, C., 2015. “Reclaimed asphalt binder aging and its implications in the management of RAP stockpiles” Construction and Building Materials, v 101, Part 1, pp 611-616, doi:10.1016/j.conbuildmat.2015.10.125
12. Garcia, N. F., Valdes, J. R., and ηCortes, D. D., 2015. “Strength characteristics of polymer-bonded sands” Géotechnique Letters, v 5, n July-September, pp 212-216, doi.org/10.1680/jgele.15.00089
11. Pasten, C., Garcia, M., and ηCortes, D. D., 2015. “Physical and numerical modelling of the thermally induced wedging mechanism” Géotechnique Letters, v 5, n July-September, pp 186-190, doi.org/10.1680/jgele.15.00072
10. ηNasirian, A., ηCortes, D. D., and Dai, S., 2015. “The physical nature of thermal conduction in dry granular media.” Géotechnique Letters, v 5, n January-March, pp 1-5, doi.org/10.1680/geolett.14.00073
9. ηWilliamson, S., and ηCortes, D. D., 2014. “Dimensional analysis of soil–cement mixture performance.” Géotechnique Letters, v 4, n January-March, pp 33-38, doi:10.1680/geolett.13.00082
8. ηCortes, D. D., Santamarina, J. C., 2013. “The LaGrange Case History: Inverted Pavement System Characterization and Preliminary Numerical Analyses.” International Journal of Pavement Engineering, v 14, n 5, pp 463-471, doi:10.1080/10298436.2012.742192.
7. ηCortes, D. D., Shin, H., Santamarina, J. C., 2012. “Numerical Simulation of Inverted Pavement Systems.” Journal of Transportation Engineering, v 138, n 12, pp 1507-1519, doi:10.1061/(ASCE)TE.1943-5436.0000472.
6. ηCortes, D. D., Santamarina, J. C., Jugo, A., 2012. “Pavimentos Flexibles con Rigidez Invertida: Caracterización Experimental y Modelación Numérica.” Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, v 12, n 1, pp 136-143.
5. Fragaszy, R. J., Santamarina, J. C., Amekudzi, A. A., Assimaki, D., Bachus, R., Burns, S. E., Cha, M.-S., Cho, G.-C., ηCortes, D. D., 2011.“Sustainable Development and Energy Geotechnology – Potential Roles for Geotechnical Engineering.” KSCE Journal of Civil Engineering, v 15, n 4, pp 611-621, doi: 10.1007/s12205-011-0102-7.
4. ηCortes, D. D., A. I. Martin, T. S. Yun, F. M. Francisca, J. C. Santamarina, and C. Ruppel, 2009. “Thermal Conductivity of Hydrate-Bearing Sediments.” Journal of Geophysical Research, 114, B11103, doi:10.1029/2008JB006235.
3. Waite, W.F., Santamarina, J.C., ηCortes, D. D., Dugan, B., Espinoza, D.N., Germaine, J., Jang, J., Jung, J., Kneafsey, T., Shin, H.S., Soga, K., Winters, W., Yun T.S., 2009. “Physical Properties of Hydrate-Bearing Sediments.” Reviews of Geophysics, 47, RG4003, doi:10.1029/2008RG000279.
2. ηCortes, D. D., Kim, H. K., Palomino, A. M., and Santamarina, J. C., 2008. “Rheological and Mechanical Properties of Mortars Prepared with Natural and Manufactured Sands.” Cement and Concrete Research, v 38, n 10, pp 1142-1147. doi:10.1016/j.cemconres.2008.03.020.
1. Kim, H. K., ηCortes, D. D., and Santamarina, J. C., 2007. “Flow Test: Particle-Level and Macroscale Analyses.” ACI Materials Journal, v 104, n 3, pp 323-327.
Names in bold denote current and former ηGRL members.
3. Cortes, D D., Nasirian, A. and Dai, S., 2018. "Smart Ground-Source Borehole Heat Exchanger Backfills: A Numerical Study." International Symposium on Energy Geotechnics, Lausanne, Switzerland. Sep. 25-28. pp. 27-34, doi.org/10.1007/978-3-319-99670-7_4.
2. Valdes, J. R., Cortes, D. D., 2014. “Heat-Induced Bonding of Sands.” GeoCongress 2014: Geo-Characterization and Modeling for Sustainability. Atlanta, GA. Feb 23-26. Technical Paper, pp 3721-3733, doi: 10.1061/9780784413272.361.
1. Cortes, D. D., Santamarina, J. C., 2012. “Engineered Soils: Thermal Conductivity.” Proceedings of the 2012 World Congress on Advances in Civil, Environmental, and Materials Research. Seoul, South Korea. Aug 26-30. Technical Paper, pp 2482-2492.