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Abstract—In this paper, we evaluate the vulnerability of speaker
veriÞcation (SV) systems to synthetic speech. The SV systems
are based on either the Gaussian mixture modelÐuniversal back-
ground model (GMM-UBM) or support vector machine (SVM)
using GMM supervectors. We use a hidden Markov model
(HMM)-based text-to-speech (TTS) synthesizer, which can synthe-
size speech for a target speaker using small amounts of training
data through model adaptation of an average voice or background
model. Although the SV systems have a very low equal error rate
(EER), when tested with synthetic speech generated from speaker
models derived from the Wall Street Journal (WSJ) speech corpus,
over 81% of the matched claims are accepted. This result suggests
vulnerability in SV systems and thus a need to accurately detect
synthetic speech. We propose a new feature based on relative phase
shift (RPS), demonstrate reliable detection of synthetic speech,
and show how this classiÞer can be used to improve security of SV
systems.

Index Terms—Security, speaker recognition, speech synthesis.

I. INTRODUCTION
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problems for SV systems. The Þrst problem is conÞrmation of
an acquired speech signal as having originated from a partic-
ular individual. In this case, the speech signal might be incor-
rectly conÞrmed as having originated from an individual when
in fact the speech signal is synthetic. The second problem is in
remote or online authentication where voice is used. In this case,
a synthesized speech signal could be used to wrongly gain ac-
cess to a personÕs account and text-prompting would not present
a problem for a text-to-speech (TTS) system. In both of these
problems, the speech model for the synthesizer must be targeted
to a speciÞc personÕs voice. SV is also being used in forensic ap-
plications [12] and therefore security against imposture is also
of obvious importance.

The problem of imposture against SV systems using syn-
thetic speech was Þrst published over 10 years ago by Masuko,
et al. [13]. In their original work, the authors used a hidden
Markov model (HMM)-based text-prompted SV system [2]
and an HMM-based TTS synthesizer. In the SV system, feature
vectors were scored against speaker and background models
composed of concatenated phoneme models. The acoustic
models used in the speech synthesizer were adapted to each
of the human speakers [14], [15]. When tested with 20 human
speakers, the system had a 0% false acceptance rate (FAR) and
7.2% false rejection rate (FRR); when tested with synthetic
speech, the system accepted over 70% of matched claims, i.e.
a synthetic signal matched to a targeted speaker and an identity
claim of that same speaker.

In subsequent work by Masuko,et al. [16], the authors ex-
tended the research in two ways. First, they improved their syn-
thesizer by generating speech using

(fundamental frequency)
information. Second, they improved their SV system by uti-
lizing both and spectral information. The modeling tech-
niques used in synthesis were the same used in the SV system.
By improving the SV system, the authors were able to lower the
matched claim rate for synthetic speech to 32%, however, the
FAR for the human speech increased to 1.8%.

In the last 10 years, both SV and TTS systems have im-
proved dramatically. Around the same time as MasukoÕs
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work, Gaussian mixture model-universal background model
(GMM-UBM) SV systems were first proposed [1]. Since this
time, GMM-UBM based SV systems have produced excellent
performance and have achieved equal error rates (EERs) of
0.1% on the TIMIT corpus (ideal recordings) and 12% on
NIST 2002 Speaker Recognition Evaluations (SRE) (non-ideal
recordings) [17], [18]. Newer systems based on support vector
machines (SVMs) using GMM supervectors have been pro-
posed and in some cases can lead to lower EERs [19], [20].

Until recently, developing a TTS synthesizer for a targeted
speaker required a large amount of speech data from a carefully
prepared transcript in order to construct the speech model.
However, with a state-of-the-art HMM-based TTS synthesizer
[21], the speech model can now be adapted from an average
model (derived from other speakers) or a background model
(derived from one speaker) using only a small amount of
speech data. Moreover, recent experiments with HMM-based
speech synthesis systems have also demonstrated that the
speaker-adaptive HMM-based speech synthesis is robust to
non-ideal speech data that are recorded under various con-
ditions and with varying microphones, that are not perfectly
clean, and/or that lack phonetic balance. In [22] a high-quality
voice was built from audio collected off of the Internet. This
data was not recorded in a studio, had a small amount of
background noise, and the microphones varied in the data.
Further [23] reported construction of thousands of voices for
HMM-based speech synthesis based on corpora such as the
Wall Street Journal (WSJ0, WSJ1, and WSJCAM0), Resource
Management, Globalphone, and SPEECON. Taken together,
these state-of-the-art speech synthesizers pose new challenges
to SV systems.

In prior work, we utilized a state-of-the-art TTS synthesizer
and revisited the problem of imposture using a GMM-UBM SV
system with a small speech corpus [24] and then extended to
a larger corpus [25]. Recently, we examined the performance
using the SVM-based SV system and initial experiments on de-
tecting a synthetic speech signal [26]. In this paper, we provide
complete evaluations using both GMM-UBM and SVM-based
SV systems and new results from a proposed synthetic speech
detector (SSD) which uses phase-based features for classifi-
cation. First, we train two different SV systems (GMM-UBM
and SVM using GMM supervectors) using human speech (283
speakers from the WSJ corpus). Second, we create synthetic
test speech for each of the 283 speakers by adapting a back-
ground model to the targeted speaker. Finally, we measure EER
and true acceptance rates when tested using human speech and
measure the matched claim rate using synthetic speech. As we
will demonstrate, the matched claim rate is above 81% for each
of the SV systems hence the vulnerability of the SV systems
to synthetic speech. Next, we turn our attention to detection
of synthetic speech as a means to prevent imposture by syn-
thetic speech. We summarize results with a previously proposed
method which uses average inter-frame difference of log-likeli-
hood (IFDLL) [27] and show that this is no longer a viable dis-
criminator for high-quality synthetic speech such as that which
we are using. Instead, we propose a new discrimination feature
based on relative phase shift (RPS) and show that this can be
used to reliably detect synthetic speech. We also show a simple

and effective method for training the classifier using transcoded
human speech as a surrogate for synthetic speech.

This paper is organized as follows. In Sections II and III,
we provide brief overviews of the SV and TTS systems. In
Section IV, we review IFDLL and provide details on our pro-
posed RPS feature for detecting synthetic speech. In Section V,
we describe the WSJ corpus and explain how we partitioned
the corpus for training and testing of all the required systems.
We note that although the WSJ corpus is not a standard corpus
for SV research, it is one of the few that provides sufficient
speech material from hundreds of speakers which is required to
construct synthetic voices matched to their human counterparts.
Section VI gives the evaluation results using the WSJ corpus
and its synthesized counterpart as well as the results when using
RPS to detect synthetic speech. Finally, we conclude the article
in Section VII.

II. SPEAKER VERIFICATION SYSTEMS

Our SV systems are based on the well-known GMM-UBM
described in [17] and the SVM using GMM supervectors de-
scribed in [19]. We briefly review these systems and our imple-
mentation in the following subsections.

A. SV System Training

For both SV systems, feature vectors
are extracted every 10 ms using a

25-ms hamming window and composed of 15 mel-frequency
cepstral coefficients (MFCCs), 15 delta MFCCs, log energy,
and delta-log energy as elements. We apply feature warping
to the vectors in order to improve robustness [28] which is
adequate given the high-quality recordings in the WSJ corpus.

Training the GMM-UBM system is composed of two stages,
shown in Fig. 1(a) and (b). The SVM using GMM supervec-
tors system includes these two stages and two additional stages
shown in Fig. 1(c) and (d). In the first stage, a GMM-UBM con-
sisting of the model parameters is con-
structed from the collection of speakers’ feature vectors. Here,
we assume component densities in the GMM-UBM
and , , and represent, respectively, the weight, mean
vector, and diagonal covariance matrix of the th component
density where . These parameters are estimated
using the expectation maximization (EM) algorithm. In prac-
tice the GMM-UBM is constructed from non-target speakers.

In the second stage, feature vectors are extracted from target
speakers’ utterances. We assume the availability of several utter-
ances per speaker recorded (preferably) under different channel
conditions in order to improve the speaker modeling and ro-
bustness of the system. Feature vectors from each utterance
are used to maximum a posteriori(MAP)-adapt only the mean
vectors of the GMM-UBM to form speaker- and utterance-de-
pendent models where is the
MAP-adapted mean vector of the th component density from
speaker and utterance .

In the third stage (used for the SVM), the mean vectors
are then diagonally scaled according to

(1)
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Fig. 3. Phasegrams of a voiced speech segment for five continuous vowels. (a) Instantaneous phases. (b) Relative phase shift. (c) Signal waveform.

every harmonic are then calculated from the instantaneous phase
at each analysis instant using

(11)

More specifically, this transformation removes the linear phase
contribution due to the frequency of every harmonic from the in-
stantaneous phase and allows a clear phase structure to arise, as
shown in Fig. 3. The RPS values for voiced segments are illus-
trated in Fig. 3(b) and show a structured pattern along frequency
as the signal evolves.

In order to use RPS values as features for classification and
detection of synthetic speech, several important steps must be
carried out. These steps were initially developed for an ASR
task [45] and are listed below:

1) Due to the variable number of harmonics found in a pre-
defined frequency range, the dimensionality of the vector
of RPS values varies from frame to frame. We transform
the variable-dimension vectors into fixed-dimension vec-
tors by applying a Mel-scale filter bank with 32 filters.

2) The dimensionality of the RPS vector is very high, if the
usual analysis bandwidth is considered. This is problematic
for training any statistical model; therefore, RPS values are
computed over a frequency range from 0 to 4 kHz and the
discrete cosine transform (DCT) is used at the end of the
process to decorrelate and reduce the dimensionality.

3) The RPS values in (11) are wrapped phase values
and therefore may create discontinuities as shown in
Fig. 4(a) and (b). This is also problematic for parameter-
ization. Therefore we unwrap the phase in order to avoid
the discontinuities in the RPS envelope.

4) Due to its accumulative, nonlinear nature, the unwrap-
ping process leads to very different RPS envelopes

even if they derive from similar initial data as shown in
Fig. 4(c) and (d). If we differentiate the unwrapped RPS
envelope the accumulative effect is eliminated, the range
of the curve is limited to , and thus similarities
between envelopes are more properly perceived. This can
be seen in Fig. 4(e) and (f).

In order to develop a classifier for synthetic speech, we com-
pute 20 coefficients per speech frame according to steps 1–4.
The mean of the differentiated unwrapped RPS (i.e. the mean
slope of the unwrapped RPS) has been removed before calcu-
lating the DCT and added as a parameter, resulting in a total of
21 coefficients per frame which are used as a feature vector,
for the classifier. Here only voiced segments of the signals have
been used, because there is no useful phase information in un-
voiced frames. The voiced/unvoiced decision is made using the
cepstrum-based pitch detection (CDP) algorithm [47]. The RPS
values are then extracted using a 10 ms frame-rate.

For the SSD, we use a 32-component density GMM in the
classifier trained on RPS feature vectors extracted from human
and synthetic speech signals. Detection of synthetic speech oc-
curs once the speaker verification system has accepted the iden-
tity (see Fig. 5)—currently, we see no need to apply the SSD if
the SV system has rejected the identity. If an identity claim,
is accepted, we compute the log-likelihood ratio

(12)

where is the sequence of RPS fea-
ture vectors and and represent GMMs of the
RPS feature vectors for human and synthetic speech associated
with claimant , respectively. The speaker is then classified as
human if , otherwise it is classified as synthetic.
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TABLE II
ACCEPTANCERATES FORHUMAN SPEECH(TRUE CLAIMANT ) AND SYNTHETIC
SPEECH(MATCHED CLAIM ) FOR OVERALL SYSTEM CONSISTING OFSPEAKER
VERIFICATION (SV) AND SYNTHETIC SPEECHDETECTOR(SSD). IDEALLY THE
SYSTEM HAS 100% ACCEPTANCERATE FOR HUMAN SPEECH, TRUE CLAIM

AND 0% FOR SYNTHETIC SPEECH, MATCHED CLAIM

train the SSD, all system components (TTS, SV, SSD) can be
trained using only human speech.

Since each speaker included in the SI-284 set has different
speech durations, we used varying lengths (73 s to 27 min)
of training signals from subset HS-A to construct and adapt
the TTS system to each speaker. Some speakers have larger
amounts of data than those we can practically collect for the
imposture against the SV system.

VI. EXPERIMENTS AND RESULTS

A. Evaluation of Speaker VeriÞcation Systems

For the two SV systems, we have trained using90 s speech
signals from subset HS-B and tested using30 s signals
from subsets HS-C and TTS-C. Training signals for the SVM
SV system were segmented into eight utterances per speaker
and used to construct GMM supervectors as described in
Section II-A. The evaluation for human speech was designed
so that each test utterance has an associated true claim and 282
false claims yielding a total of tests. The EERs are 0.284%,
0.002% for the GMM-UBM, SVM system respectively. The
low EERs ( 0.3% for both SV systems) are due to the ideal
nature of the recordings in the WSJ corpus and the accuracy of
the SV systems. Table II row 2 shows the acceptance rates of
the SV systems under human speech for true claims as 99.7%,
100% for the GMM-UBM, SVM system respectively.

The evaluation for synthetic speech was designed so that each
test utterance has an associated matched claim yielding 283 tests
for imposture. (In a realistic imposture scenario, a speech signal
targeted at a speciÞc speaker will be synthesized and a claim
only for that speaker will be submitted, i.e. matched claim.) For
both SV systems, the decision thresholds are chosen for EER
under human speech signal tests. Table II row 3 shows the re-
sults where we see over 81% of synthetic speech signals with
an associated matched claim will be accepted by the SV sys-
tems. As described in an earlier paper, this result is due to signif-
icant overlap in the score distributions for human and synthetic
speech, as shown in Fig. 6 [24]. Thus, adjustments in decision
thresholding or standard score normalization techniques cannot

Fig. 6. Approximate score distributions for (a) GMM-UBM and (b) SVM using
GMM supervectors SV systems with human and synthesized speech. Distribu-
tions for human speech, true claimant (green lines, o) and synthesized speech,
matched claimant (black lines, x) have signiÞcant overlap leading to a 81% ac-
ceptance rate for synthetic speech with matched claims.

differentiate between true and matched claims originating from
human and synthesized speech [50], [51]. For completeness in
Fig. 6, we show the score distributions for synthesized speech,
false claim (imposter) even though in the imposture scenario,
only matched claims would be submitted.

B. Evaluation of Synthetic Speech Detector

We trained the SSD, described in Section IV-B, on human
speech using HS-B and synthetic speech using TTS-B as in
Table I and evaluated classiÞer accuracy with human speech
from HS-C and synthetic speech from TTS-C. These results are
shown in Table III row 1 where we Þnd 100% accuracy in classi-
fying a speech signal as either human or synthetic. As mentioned
earlier, constructing synthetic voices for each human registered
in the SV system is not very practical, so we trained the SSD
using transcoded human speech CS-B as a surrogate for syn-
thetic speech. These results are shown in Table III where we
Þnd that with the decision threshold set to zero, human speech
signals are classiÞed with 100% accuracy and synthetic speech
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