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Abstract

In this paper, we propose a two-stage speech enhancement tech-
nique. In the training stage, a Gaussian Mixture Model (GMM)
of the mel-frequency cepstral coefficients (MFCCs) of a user’s
clean speech is computed wherein the component densities of
the GMM serve to model the user’s “acoustic classes.” In the
enhancement stage, MFCCs from a noisy speech signal are
computed and the underlying clean acoustic class is identified
via a maximum a posteriori (MAP) decision and a novel map-
ping matrix. The associated GMM parameters are then used
to estimate the MFCCs of the clean speech from the MFCCs
of the noisy speech. Finally, the estimated MFCCs are trans-
formed back to a time-domain waveform. Our results show that
we can improve PESQ in environments as low as —10 dB SNR.

Index Terms: Speech enhancement, MFCC, GMM

1. Introduction

Enhancement of noisy speech remains an active area of research
due to the difficulty of the problem. Standard methods such as
spectral subtraction [1], Wiener filtering [2], minimum mean-
square error (MMSE) estimation [3], and generalized subspace
[4] can improve perceptual evaluation of speech quality (PESQ)
scores but at the expense of other distortions such as musical
artifacts. With all of these methods, PESQ can be improved by
as much as 0.6 for speech with 10 to 30 dB input SNR. The
effectiveness of these methods deteriorates rapidly below 5 dB
input SNR.

Gaussian Mixture Models (GMMs) of a speaker’s mel-
frequency cepstral coefficients (MFCCs) have been success-
fully used in speaker recognition systems [5]. Due to non-
deterministic aspects of speech, it is desirable to model each
acoustic class with a Gaussian probability density function [6].
Since GMMs can model arbitrary distributions [5], they are well
suited to modeling speech, whereby each acoustic class is mod-
eled by a single component density.

The use of cepstral/GMM-based systems for speech en-
hancement has only recently been investigated. Compared to
most algorithms which do not require clean speech signals for
training [1-4], recent research assumes availability of a clean
speech signal to build user-dependent models for enhancing
noisy speech [7, 8].

In this paper, we propose a two-stage speech enhancement
technique which leverages a user’s clean speech. In Sections
2 and 3, we provide details of the training and enhancement
stages, respectively. In Section 4, we describe the experimen-
tal evaluation and provide results and commentary. Finally, in
Section 5, we conclude the paper and discuss areas of future
research.
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Figure 1: Training stage of proposed speech enhancement sys-
tem.

2. Training

In the training stage (Fig. 1), we synthesize a noisy speech sig-
nal x from a clean speech signal s and a representative noise
signal v as

r = s+ ey

In synthesizing x, the noise type (e.g., white) and SNR should
be chosen according to the known/anticipated operational envi-
ronment. Estimation of noise type and SNR can be achieved
through analysis of the non-speech portions of the acquired
noisy speech signal. In a real-time application, one could cre-
ate a family of synthesized noisy speech training signals using
different noise types and SNRs and select the appropriate noisy
speech model based on enhancement performance.

2.1. Speech Analysis

The cepstral analysis of speech signals is homomorphic signal
processing to separate convolutional aspects of the speech pro-
duction process; mel-frequency cepstral analysis has a basis in
human pitch perception and is perhaps more common. The glot-
tal pulse (pitch) and formant structure of speech contains infor-
mation important for characterizing individual speakers [5, 6],
as well as for characterizing individual acoustic classes con-
tained in the speech.

We use a 20 ms Hamming window with 50% overlap to
compute a 62-dimensional vector of MFCCs C, C; from s, z,
respectively. The MFCCs are based on an DFT length of 320
(the window length) and a DCT of length 62 (the number of
mel-filters). The mel-scale filters are 20 triangular weighting
functions linearly-spaced from 0-1 kHz, 40 triangular weighting
functions logarithmically-spaced from 1-8 kHz, and two “half-
triangle” weighting functions centered at 0 and 8 kHz. The two
“half-triangle” weighting functions improve the quality of the
enhanced speech signal by improving the accuracy in the inver-
sion of the MFCC vector to a time-domain waveform.



Algorithm 1 Computation of ACMM A
Initialize A = 0
for each MFCC vector Cs and C';. do
j = argmax p(i|Cs, As)

k = argmax p(i|Cz, \z)
Ajp— Ajr+1

end for
M

Aj,k < AM‘/Z Ai,k for 1 < j, k < M
=1

2.2. Signal Modeling

The time-aligned sequences of MFCC vectors Cs and C, are
modeled by a GMM:

M
p(CIA) = > wipi(C) 2)
1=1

where M is the number of component densities, C' is the 62-
dimensional vector of MFCCs, w; are the weights, and p;(C)
is the i-th component density

1
p’L(C) - (27F)D/2|Ei|1/2
3)
where D = 62 is the dimensionality of the MFCC vector, p; is
the mean vector, and ¥; is the diagonal covariance matrix. Each
GMM is parametrized by A = {w;, p;, X5}, 1 < ¢ < M and
we denote the GMMs for Cs, C by As, A, respectively. The
GMM parameters are computed via the Expectation Maximiza-
tion (EM) algorithm [5]. As in [6], we use a GMM to model
the distribution of MFCC vectors and use individual compo-
nent densities as models of distinctive acoustic classes for more
specialized enhancement over the acoustic classes.

2.3. Acoustic Class Mapping Matrix (ACMM)

In the EM computation of the GMM parameters, there is
no guarantee that the j-th component density in A\s models the
same acoustic class as the j-th density in A;. Thus, for each
acoustic class, we must link corresponding component densities
in As and A;.

This mapping from clean acoustic class to noisy acoustic
class can be ascertained from the MFCC vectors. We can iden-
tify which acoustic class Cs, C, belongs to, given the GMM
As, Az respectively by computing the a posteriori probabilities
for the acoustic classes and identifying the acoustic class which
has the maximum [5]

j = argmaxp(i|C,\)

_ wipi(C)
= argmax PO 4

With sufficiently long and phonetically diverse time-aligned
training signals, we can develop a probabilistic model which en-
ables us to map each component density in A to the component
densities in \;. Algorithm 1 gives a procedure for computing
the ACMM, A. The column-wise normalization of A provides
a probabilistic mapping from noisy component density & (col-
umn of A) to clean component density j (row of A). Thus,
each column of A (noisy acoustic class) contains probabilities
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Figure 2: Speech enhancement stage.

of that noisy acoustic class having been perturbed from each of
the possible clean acoustic classes (rows of A).

Algorithm 1 above gives a procedure for computing the
ACMM, A. The column-wise normalization of A provides a
probabilistic mapping from noisy component density k (column
of A) to clean component density j (row of A). Thus, each
column of A contains probabilities of that noisy acoustic class
having been perturbed from each of the possible clean acoustic
classes (rows of A).

3. Enhancement

In this section we describe the enhancement stage illustrated in
Fig. 2. We denote the noisy signal to be enhanced as =’ and
assume an additive noise model

@ = s+ (®)]
We assume that s’ is speech from the same speaker as s, v’ is
the same type of noise as v, and that ' is mixed from s’ and v’
at a SNR similar to that used in synthesizing x in the training
stage.

As in the training stage, we compute the MFCC vector C,/
from the noisy speech signal. The goal is to estimate C'y/ given
C,, taking into account A, A5, and A;. We reconstruct the
enhanced time-domain speech signal s from the estimate Cy.

3.1. Speech Analysis

The parameters for speech analysis in the enhancement stage
are identical to those of the training stage. A smaller frame ad-
vance, however, allows for slightly better performance in low-
SNR due to added redundancy in the overlap-add and estimation
processes.

3.2. Identifying the Underlying Clean Acoustic Class

The noisy acoustic class is identified from MFCC vector C/
via

ko= arg max p(i|Cor, o). (6)

Using the ACMM A, noisy acoustic class & can be probabilisti-
cally mapped to the underlying clean acoustic class j, by

j = argmaxA;y. @)

The clean acoustic class J is a probabilistic estimate of the true
clean class identity for the particular speech frame.

3.3. Estimation of C/: “Phroming” Methods

The next step in enhancement is to “morph” the noisy MFCC
vector to have characteristics of the desired clean MFCC vec-
tor. Since spectral—cepstral in the original cepstrum vocab-
ulary, morphing—phroming. This cepstral phroming is more



rigorously described as an estimation of the clean MFCC vec-
tor Cy based on the noisy MFCC vector C,/, noisy acoustic
class k, ACMM A, and GMMs A, and \,. We next present two
phroming methods.

3.3.1. Phromed maximum method (PMAX)

Equation (7) returns the maximum-probability acoustic class 5
and this estimate is used as follows. Since the k-th component
density in X, and the j-th component density in A, are both
Gaussian, a simple means of estimating C: is to transform the
(Gaussian) vector C,/ into another (Gaussian) vector C’S/:

Co = pj+(E )2 Can) V2 (Cor = pior) ®)

8,

where p1, 5 and X 5 are the mean vector and (diagonal) covari-
ance matrix of the }'-th component density of A, and p,,, and
3,k are similarly defined for \;. This method is referred to as
phromed maximum (PMAX).

3.3.2. Phromed mixture method (PMIX)

Rather than using a single maximum probability acoustic class,
we use a weighted mixture of (8) with A; 5, as the weights

M
Co = 3 Aj [meg + ZU7E00 (Cor = o) 9)

j=1

This phromed mixture (PMIX) method results in a superposi-
tion of the clean speech acoustic classes in the mel-cepstrum
domain, with the weights determined based on the ACMM.
Due to the added redundancy in the weighted average of the
PMIX method, our research shows it consistently outperforms
the PMAX method.

3.4. Inverse Transformation of MFCCs

The final step in the enhancement stage (Fig. 2) is to inverse
transform C/ and obtain the speech frame s'. This is achieved
with the direct cepstral inversion (DCI) method [9] summarized
below, followed by a simple overlap-add reconstruction.
Denote the spectrum of the enhanced speech frame as S =

DFT (5’ ) . We define the mel-frequency cepstrum as

b

where @ is a bank of J mel-scale filters. In general, the speech
frame, DFT, and DCT may be different lengths, but we choose
(without loss of generality) length K for speech frame and the
DFT, and length J for the DCT.

To invert the mel weighting, we find ®’ such that

¢y =DCT {log {@ ‘5

2
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Defining @’ as the Moore-Penrose pseudoinverse ®' (&f =
_ -2
(@TQ) ! &7 for full rank ®), we assure that ’S’

tion of minimal Euclidean norm. The remaining operations can
be inverted without loss, since the DCT, DFT, log, and square
operations are invertible, assuming that we use the noisy phase
(i.e., the phase of =) for inversion of the DFT. It has been shown
previously that the phase of the noisy signal is the MMSE esti-
mate for the phase of the clean signal [3].

is the solu-

We have shown in [9] that the underconstrained nature of
the mel cepstrum inversion introduces a degradation in PESQ of
~ 0.2 points at very high SNR (for J > 52), but these artifacts
become masked by the noise below about 20 dB SNR.

3.5. Modeling Separate Formant and Pitch Information

We find significant speech enhancement improvement if the
MEFCC vector is partitioned into two subvectors

¢t = [0, ca2)]"
c* = [cQ3),---,c61)]" (12)

where ‘f” and ‘p’ refer to the formant and pitch subsets, respec-
tively. Both formant (vocal tract configuration) and pitch (ex-
citation) are important components to a total speech sound, but
should be allowed to vary independently. The cutoff for the for-
mant and pitch subsets is chosen based on the range of pitch
periods expected for both males and females, translated into the
mel-cepstrum domain.

We thus compute GMMs Af, AP, AL, AP based on MFCC
subvectors Cf, CP, CL, CP respectively. ACMMs Af, AP
are computed with Algorithm 1 using {C%, Cf}, {CP,CP}
respectively and CF,, C’E, are estimated using {C%,, \f, ALY,
{C%,, AP, AL} respectively. Finally, the estimate of the clean
MFCC vector is formed as the concatenation of C’ﬁl and C’S '

followed by inversion of C. as described in the previous sec-
tion.

We are separating the MFCCs into two subsets to better in-
dividually model formant and pitch information, rather than for
computational reasons as in [7]. Both formant (vocal tract con-
figuration) and pitch (excitation) are important components to a
total speech sound, but should be allowed to vary independently.

4. Results

The system described above has been implemented and simula-
tions run to measure average performance using ten randomly-
chosen speakers (five male and five female) from the TIMIT
corpus and noise signals from the NOISEX-92 corpus. Speech
frames are 320 samples, training signals are ~24s long with a
frame advance of 160 samples, and test signals are ~6s long
with a frame advance of 1 sample. Separate GMMs are used to
model formant and pitch information and the number of GMM
components M is 15. Results are presented in terms of PESQ
versus input SNR; PESQ has been shown to have the highest
correlation to overall signal quality [10].

4.1. Performance and Comparison to Other Methods

Fig. 3 shows the performance of the proposed method for bab-
ble and white noises. In addition, performance for spectral sub-
traction using oversubtraction [1], Wiener filtering using a pri-
ori SNR estimation [2], log-MMSE spectral amplitude estima-
tor [3], and the generalized subspace method [4] are provided
for comparison. These methods improve upon the respective
standard methods.

For the proposed method, we see a maximum improvement
in PESQ of 0.3-0.6 points over the unenhanced signal, depend-
ing on the noise type. In general, the proposed method has
an input SNR operating range from —10 dB to +35 dB, with
performance tapering off at the ends of the operating range.
Phroming typically outperforms all of the compared methods
for input SNRs below 10 dB. For further reference, the PESQ
scores are shown in Table 1 for input SNRs between —10 and
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Figure 3: Speech enhancement results (PESQ vs. input SNR).

15 dB. Subjective evaluation of the resulting enhanced wave-
forms reveals good noise reduction with minimal artifacts. In
particular, the musical noise present in spectral subtraction and
Wiener filtering is not apparent in the proposed method.

5. Conclusions and Future Research

We have proposed a two-stage speech enhancement technique
which uses GMMs to model the MFCCs from clean and noisy
speech. A novel acoustic class mapping matrix (ACMM) al-
lows us to probabilistically map the identified acoustic class in
the noisy speech to an acoustic class in the underlying clean
speech. Finally, we use the identified acoustic classes to es-
timate the clean MFCC vector. Our results show that we can
improve PESQ in environments as low as —10 dB input SNR.
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